Description
Solution
题目看起来非常复杂。
本质不同的细胞这个条件显然太啰嗦,
是否有些可以挖掘的性质?
1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同)。
所以先考虑第一次分裂后,一个固定小球体数量的情况:
2.第一次分裂后,最后的小球体数量固定。想要方案数不同,必须连接方式不同。
可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0
而fibo[n]-1=f[n-2]+...+f[1]
可以猜想和斐波那契数列有关。
实际上,f[n]=fibo[n-1],f[1]=0,f[0]=1
所以,如果我们知道第一次分裂的方案,
即S=a1+...+am(分成m段,ai表示这一段拼成的数字)
那么,f[S]=fibo[S-1]
好了,
所以,题意其实是:
• 给出一个数字序列
• 你要先把序列切成很多段,把每一段看做一个十进制数