P4219 [BJOI2014]大融合

题目描述

小强要在\(N\)个孤立的星球上建立起一套通信系统。这套通信系统就是连接\(N\)个点的一个树。 这个树的边是一条一条添加上去的。在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量。

现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问。

输入输出格式

输入格式:

第一行包含两个整数 \(N, Q\),表示星球的数量和操作的数量。星球从 \(1\) 开始编号。

接下来的 \(Q\) 行,每行是如下两种格式之一:

  • A x y 表示在 \(x\) 和 \(y\) 之间连一条边。保证之前 \(x\) 和 \(y\) 是不联通的。
  • Q x y表示询问 \((x,y)\) 这条边上的负载。保证 \(x\) 和 \(y\) 之间有一条边。

输出格式:

对每个查询操作,输出被查询的边的负载。

说明

对于所有数据,\(1≤N,Q≤10^5\)


LCT维护子树信息,涨见识了。

\(sizx_i\)代表虚边连的儿子的大小。

然后\(updata\)这样写

void updata(int now){siz[now]=siz[ls]+siz[rs]+sizx[now]+1;}

然后是在\(access\)的时候修改一下虚边儿子大小,在\(link\)的时候要把两个树都选上去保证没得父亲,因为我们不想把被连的那个点的信息再向上更新。

维护最值可以在每个点开个平衡树


Code:

#include <cstdio>
#define ll long long
#define ls ch[now][0]
#define rs ch[now][1]
#define fa par[now]
const int N=1e5+10;
int ch[N][2],par[N],siz[N],sizx[N],tag[N],s[N],tot,tmp;
bool isroot(int now){return ch[fa][0]==now||ch[fa][1]==now;}
int identity(int now){return ch[fa][1]==now;}
void updata(int now){siz[now]=siz[ls]+siz[rs]+sizx[now]+1;}
void Reverse(int now){tag[now]^=1,tmp=ls,ls=rs,rs=tmp;}
void connect(int f,int now,int typ){ch[fa=f][typ]=now;}
void pushdown(int now)
{
if(tag[now])
{
if(ls) Reverse(ls);
if(rs) Reverse(rs);
tag[now]^=1;
}
}
void Rotate(int now)
{
int p=fa,typ=identity(now);
connect(p,ch[now][typ^1],typ);
if(isroot(p)) connect(par[p],now,identity(p));
else fa=par[p];
connect(now,p,typ^1);
updata(p),updata(now);
}
void splay(int now)
{
while(isroot(now)) s[++tot]=now,now=fa;
s[++tot]=now;
while(tot) pushdown(s[tot--]);
now=s[1];
for(;isroot(now);Rotate(now))
if(isroot(fa))
Rotate(identity(now)^identity(fa)?now:fa);
}
void access(int now)
{
for(int las=0;now;las=now,now=fa)
splay(now),sizx[now]+=siz[rs]-siz[las],rs=las;
}
void evert(int now){access(now),splay(now),Reverse(now);}
void link(int u,int v){evert(u),access(v),splay(v),par[u]=v,sizx[v]+=siz[u],updata(v);}
void cat(int u,int v){evert(u),access(v),splay(v),ch[v][0]=par[u]=0,updata(v);}
int query(int now){access(now),splay(now);return siz[now];}
int n,q;
int main()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++) siz[i]=1;
char op[3];
for(int u,v,i=1;i<=q;i++)
{
scanf("%s%d%d",op,&u,&v);
if(op[0]=='Q') cat(u,v),printf("%lld\n",1ll*query(u)*query(v)),link(u,v);
else link(u,v);
}
return 0;
}

2018.12.7

05-11 20:56