[Noi2015]软件包管理器 树链剖分

Description

Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,…,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,Am−1依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

Input

输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n−1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,…,n−2,n−1号软件包依赖的软件包的编号。

接下来一行包含1个正整数q,表示询问的总数。

之后q行,每行1个询问。询问分为两种:

installx:表示安装软件包x

uninstallx:表示卸载软件包x

你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。

Output

输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。

Sample Input

7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0

Sample Output

3
1
3
2
3

HINT

一开始所有的软件包都处于未安装状态。

安装 5 号软件包,需要安装 0,1,5 三个软件包。

之后安装 6 号软件包,只需要安装 6 号软件包。此时安装了 0,1,5,6 四个软件包。

卸载 1 号软件包需要卸载 1,5,6 三个软件包。此时只有 0 号软件包还处于安装状态。

之后安装 4 号软件包,需要安装 1,4 两个软件包。此时 0,1,4 处在安装状态。

最后,卸载 0 号软件包会卸载所有的软件包。

n=100000 q=100000

题解:裸的树剖+线段树,安装的话就将节点到根的路径上所有的点变成1,边查询边修改。卸载的话就将该子树内的所有点都变成0,因为树剖维护的就是DFS序,那么找到子树的那个区间,然后查询+修改就行了。

注意是从0开始,现将所有的重儿子初始化为-1,0的父亲是-1,dfs2从0,0开始

#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=100010;
int head[maxn],to[maxn],next[maxn],fa[maxn],son[maxn],deep[maxn],top[maxn],size[maxn];
int n,m,cnt,tot,s[maxn<<2],tag[maxn<<2],p[maxn];
char str[20];
void add(int a,int b)
{
to[cnt]=b;
next[cnt]=head[a];
head[a]=cnt++;
}
void dfs1(int x)
{
int i;
size[x]=1;
for(i=head[x];i!=-1;i=next[i])
{
deep[to[i]]=deep[x]+1;
dfs1(to[i]);
size[x]+=size[to[i]];
if(son[x]==-1||size[to[i]]>size[son[x]])
son[x]=to[i];
}
}
void dfs2(int x,int tp)
{
top[x]=tp;
p[x]=++tot;
if(son[x]!=-1) dfs2(son[x],tp);
int i;
for(i=head[x];i!=-1;i=next[i])
if(to[i]!=son[x])
dfs2(to[i],to[i]);
}
void pushup(int x)
{
s[x]=s[lson]+s[rson];
}
void pushdown(int l,int r,int x)
{
if(tag[x])
{
int mid=l+r>>1;
s[lson]=(mid-l+1)*(tag[x]-1),s[rson]=(r-mid)*(tag[x]-1);
tag[lson]=tag[rson]=tag[x];
tag[x]=0;
}
}
int query(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b) return s[x];
pushdown(l,r,x);
int mid=l+r>>1;
if(b<=mid) return query(l,mid,lson,a,b);
if(a>mid) return query(mid+1,r,rson,a,b);
return query(l,mid,lson,a,b)+query(mid+1,r,rson,a,b);
}
void updata(int l,int r,int x,int a,int b,int v)
{
if(a<=l&&r<=b)
{
tag[x]=v+1;
s[x]=(r-l+1)*v;
return ;
}
pushdown(l,r,x);
int mid=l+r>>1;
if(b<=mid) updata(l,mid,lson,a,b,v);
else if(a>mid) updata(mid+1,r,rson,a,b,v);
else updata(l,mid,lson,a,b,v),updata(mid+1,r,rson,a,b,v);
pushup(x);
}
void install(int x)
{
int ans=deep[x];
while(x!=-1)
{
ans-=query(1,n,1,p[top[x]],p[x]);
updata(1,n,1,p[top[x]],p[x],1);
x=fa[top[x]];
}
printf("%d\n",ans);
}
void uninstall(int x)
{
printf("%d\n",query(1,n,1,p[x],p[x]+size[x]-1));
updata(1,n,1,p[x],p[x]+size[x]-1,0);
}
int readin()
{
int ret=0; char gc;
while(gc<'0'||gc>'9') gc=getchar();
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret;
}
int main()
{
memset(head,-1,sizeof(head));
memset(son,-1,sizeof(son));
n=readin();
int i,a;
for(i=1;i<n;i++)
{
fa[i]=readin();
add(fa[i],i);
}
fa[0]=-1,deep[0]=1;
dfs1(0),dfs2(0,0);
m=readin();
for(i=1;i<=m;i++)
{
scanf("%s",str);
a=readin();
switch(str[0])
{
case 'i':install(a); break;
case 'u':uninstall(a); break;
}
}
return 0;
}
05-11 13:29