来自:http://www.cnblogs.com/bluebean/p/5299358.html

Phong和Blinn-Phong是计算镜面反射光的两种光照模型,两者仅仅有很小的不同之处。

【转】Phong和Blinn-Phong光照模型-LMLPHP

1.Phong模型

【转】Phong和Blinn-Phong光照模型-LMLPHP

Phone模型计算中的一个关键步骤就是反射向量R的计算:

【转】Phong和Blinn-Phong光照模型-LMLPHP

上图中的位于表面“下面”的向量 ‘I’ 是原始 ‘I’ 向量的拷贝,并且二者是一样的,现在我们的目标计算出向量 ‘R’ 。根据向量相加原则,向量 ‘R’ 等于 'I' + 'V',‘I’ 是已知的,所以我们需要做的就是找出向量 ‘V’。注意法向量 ‘N’ 的负方向就是 ‘-N’,我们可以在 ‘I’ 和 ‘-N’ 之间使用一个点乘运算就能得到 ‘I’ 在 ‘-N’ 上面的投影的模。这个模正好是 ‘V’ 的模的一半,由于 ‘V’ 与 ‘N’ 有相同的方向,我们可以将这个模乘上 ‘N’ (其模为 1 )再乘上 2 即可得到 ‘V’。总结一下就是下面的公式:

【转】Phong和Blinn-Phong光照模型-LMLPHP

2.Blinn-Phong模型

Phong模型中计算反射光线的向量是一件相对比较耗时的任务,因此Blinn-Phong对这一点进行了改进。

【转】Phong和Blinn-Phong光照模型-LMLPHP

Ks:物体对于反射光线的衰减系数

N:表面法向量

H:光入射方向L和视点方向V的中间向量

Shininess:高光系数

可见,通过该式计算镜面反射光是符合基本规律的,当视点方向和反射光线方向一致时,计算得到的H与N平行,dot(N,H)取得最大;当视点方向V偏离反射方向时,H也偏离N。

同时H的计算比起反射向量R的计算简单的多,R向量的计算需要若干次的向量乘法与加法,而H的计算仅仅需要一次加法。

下面是用cg着色语言书写的Phong和Blinn-Phong的顶点和片段着色程序

Phong_FragmentLighting_v.cg
【转】Phong和Blinn-Phong光照模型-LMLPHP
 1 struct V2F{
2 float4 position:POSITION;
3 float3 worldPosition: TEXCOORD0;
4 float3 worldNormal :TEXCOORD1;
5 };
6 void Phong_FragmentLighting_v(float4 position :POSITION,
7 float4 normal:NORMAL,
8 uniform float4x4 modelMatrix,
9 uniform float4x4 modelMatrix_IT,
10 uniform float4x4 modelViewProj,
11 out V2F O){
12 O.position=mul(modelViewProj,position);
13 O.worldPosition=mul(modelMatrix,position).xyz;
14 O.worldNormal=normalize(mul(modelMatrix_IT,normal)).xyz;
15 }
【转】Phong和Blinn-Phong光照模型-LMLPHP
Phong_FragmentLighting_f.cg
【转】Phong和Blinn-Phong光照模型-LMLPHP
 1 void Phong_FragmentLighting_f(float3 position :TEXCOORD0,
2 float3 normal: TEXCOORD1,
3 uniform float3 globalAmbient,
4 uniform float3 lightColor,
5 uniform float3 lightPosition,
6 uniform float3 eyePosition,
7 uniform float3 Ke,
8 uniform float3 Ka,
9 uniform float3 Kd,
10 uniform float3 Ks,
11 uniform float shininess,
12 out float4 color:COLOR)
13 {
14 float3 N=normalize(normal);
15 float3 L=normalize(lightPosition-position);
16 float3 V=normalize(eyePosition-position);
17
18 float3 R=reflect(-L,N);
19 R=normalize(R);
20
21 // Compute emissive term
22 float3 emissive = Ke;
23
24 // Compute ambient term
25 float3 ambient = Ka * globalAmbient;
26
27 // Compute the diffuse term
28 float diffuseLight = max(dot(N, L), 0);
29 float3 diffuse = Kd * lightColor * diffuseLight;
30
31 // Compute the specular term
32 float specularLight = pow(max(dot(V, R), 0), shininess);
33 if (diffuseLight <= 0) specularLight = 0;
34 float3 specular = Ks * lightColor * specularLight;
35
36 //color.xyz = emissive + ambient + diffuse + specular;
37 color.xyz=ambient + diffuse + specular;
38 color.w = 1;
39 }
【转】Phong和Blinn-Phong光照模型-LMLPHP
BlinnPhong_FragmentLighting_v.cg
【转】Phong和Blinn-Phong光照模型-LMLPHP
 1 struct V2F{
2 float4 position:POSITION;
3 float3 worldPosition: TEXCOORD0;
4 float3 worldNormal :TEXCOORD1;
5 };
6 void BlinnPhong_FragmentLighting_v(float4 position :POSITION,
7 float4 normal:NORMAL,
8 uniform float4x4 modelMatrix,
9 uniform float4x4 modelMatrix_IT,
10 uniform float4x4 modelViewProj,
11 out V2F O){
12 O.position=mul(modelViewProj,position);
13 O.worldPosition=mul(modelMatrix,position).xyz;
14 O.worldNormal=normalize(mul(modelMatrix_IT,normal)).xyz;
15 }
【转】Phong和Blinn-Phong光照模型-LMLPHP
 
BlinnPhong_FragmentLighting_f.cg
【转】Phong和Blinn-Phong光照模型-LMLPHP
 1 void BlinnPhong_FragmentLighting_f(float3 position :TEXCOORD0,
2 float3 normal: TEXCOORD1,
3 uniform float3 globalAmbient,
4 uniform float3 lightColor,
5 uniform float3 lightPosition,
6 uniform float3 eyePosition,
7 uniform float3 Ke,
8 uniform float3 Ka,
9 uniform float3 Kd,
10 uniform float3 Ks,
11 uniform float shininess,
12 out float4 color:COLOR)
13 {
14 float3 N=normalize(normal);
15 float3 L=normalize(lightPosition-position);
16 float3 V=normalize(eyePosition-position);
17
18 float3 H=normalize(L+V);
19
20 // Compute emissive term
21 float3 emissive = Ke;
22
23 // Compute ambient term
24 float3 ambient = Ka * globalAmbient;
25
26 // Compute the diffuse term
27 float diffuseLight = max(dot(N, L), 0);
28 float3 diffuse = Kd * lightColor * diffuseLight;
29
30 // Compute the specular term
31 float specularLight = pow(max(dot(H, N), 0), shininess);
32 if (diffuseLight <= 0) specularLight = 0;
33 float3 specular = Ks * lightColor * specularLight;
34
35 color.xyz=ambient + diffuse + specular;
36 color.w = 1;
37 }
【转】Phong和Blinn-Phong光照模型-LMLPHP
效果对比:

【转】Phong和Blinn-Phong光照模型-LMLPHP

Phong光照模型

【转】Phong和Blinn-Phong光照模型-LMLPHP

Blinn-Phong光照模型

通过简单的对比发现,在相同条件下Blinn-Phong的高光范围要比Phong更大,写实效果Phong光照模型更好。但算法简单,运行速度快是Blinn-Phong光照模型的优点。
04-23 12:24