动态dp
瞎扯两句吧
先从序列上理解,维护链的最大独立集。
考虑是从左边转移的,那么矩阵的转移唯一,直接放在线段树上就可以了。
放在树上的话,儿子都可以转移,把轻儿子的转移放在子链链头更新,然后每条链都处理成序列就行了。
注意一点,因为维护的是序列,所以单点存放的矩阵是只含轻儿子和自己的贡献,相当于把轻儿子的子树缩给了自己,而重儿子维护的东西是通过线段树上维护的区间贡献过来的。
咕咕模板,最大全独立集
Code:
#include <cstdio>
#include <algorithm>
#include <cctype>
using std::max;
const int N=1e5+10;
const int inf=0x3f3f3f3f;
int n,m,v[N];
int read()
{
int x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) {x=x*10+c-'0';c=getchar();}
return x*f;
}
int head[N],to[N<<1],Next[N<<1],cnt;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
int dfn[N],top[N],bot[N],siz[N],ha[N],f[N],ws[N],dfsclock,dp[N][2],len;
void dfs1(int now)
{
++siz[now],dp[now][1]=v[now];
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=f[now])
{
f[v]=now,dfs1(v),siz[now]+=siz[v];
dp[now][1]+=dp[v][0];
dp[now][0]+=max(dp[v][0],dp[v][1]);
if(siz[v]>siz[ws[now]]) ws[now]=v;
}
}
void dfs2(int now,int anc)
{
ha[dfn[now]=++dfsclock]=now;
bot[top[now]=anc]=now;
if(ws[now]) dfs2(ws[now],anc);
for(int v,i=head[now];i;i=Next[i])
if(!dfn[v=to[i]])
dfs2(v,v);
bot[now]=bot[anc];
}
struct matrix{int dx[2][2];}mx[N<<2],upt[N];
matrix operator *(matrix a,matrix b)
{
matrix ret;
ret.dx[0][0]=max(a.dx[0][0]+b.dx[0][0],a.dx[0][1]+b.dx[1][0]);
ret.dx[0][1]=max(a.dx[0][0]+b.dx[0][1],a.dx[0][1]+b.dx[1][1]);
ret.dx[1][0]=max(a.dx[1][0]+b.dx[0][0],a.dx[1][1]+b.dx[1][0]);
ret.dx[1][1]=max(a.dx[1][0]+b.dx[0][1],a.dx[1][1]+b.dx[1][1]);
return ret;
}
#define ls id<<1
#define rs id<<1|1
void build(int id,int l,int r)
{
if(l==r)
{
int now=ha[l],g0=0,g1=v[now];
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=ws[now]&&v!=f[now])
g0+=max(dp[v][0],dp[v][1]),g1+=dp[v][0];
upt[l]=mx[id]=(matrix){g0,g0,g1,-inf};
return;
}
int mid=l+r>>1;
build(ls,l,mid),build(rs,mid+1,r);
mx[id]=mx[ls]*mx[rs];
}
matrix query(int id,int L,int R,int l,int r)
{
if(l==L&&r==R) return mx[id];
int Mid=L+R>>1;
if(r<=Mid) return query(ls,L,Mid,l,r);
else if(l>Mid) return query(rs,Mid+1,R,l,r);
else return query(ls,L,Mid,l,Mid)*query(rs,Mid+1,R,Mid+1,r);
}
void change(int id,int l,int r,int p)
{
if(l==r) {mx[id]=upt[l];return;}
int mid=l+r>>1;
if(p<=mid) change(ls,l,mid,p);
else change(rs,mid+1,r,p);
mx[id]=mx[ls]*mx[rs];
}
void modify(int now,int w)
{
upt[dfn[now]].dx[1][0]+=w-v[now],v[now]=w;
while(233)
{
matrix a=query(1,1,n,dfn[top[now]],dfn[bot[now]]);
change(1,1,n,dfn[now]);
matrix b=query(1,1,n,dfn[top[now]],dfn[bot[now]]);
now=f[top[now]];
if(!now) break;
upt[dfn[now]].dx[0][0]+=max(b.dx[0][0],b.dx[1][0])-max(a.dx[0][0],a.dx[1][0]);
upt[dfn[now]].dx[0][1]=upt[dfn[now]].dx[0][0];
upt[dfn[now]].dx[1][0]+=b.dx[0][0]-a.dx[0][0];
}
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++) v[i]=read();
for(int u,v,i=1;i<n;i++) u=read(),v=read(),add(u,v),add(v,u);
dfs1(1),dfs2(1,1),build(1,1,n);
for(int u,w,i=1;i<=m;i++)
{
u=read(),w=read();
modify(u,w);
matrix ans=query(1,1,n,1,dfn[bot[1]]);
printf("%d\n",max(ans.dx[0][0],ans.dx[1][0]));
}
return 0;
}
2019.1.2