在验证verilog逻辑模块功能时候,我们可以从文件中读入激励,便于大规模的验证。文件中的数据我们可以用c++编写程序产生。
第一种读入文件的方法是用系统函数:$readmemb, readmemh, 第一个函数是读入二进制的字符串,第二个是读入16进制的字符串。
我们准备两个文本文件x1.txt
1111
1010
1110
0001
y1.txt
1101
0101
1010
0001
我们验证一个四位的加法器
加法器verilog代码如下:
module adder4(cout, sum, ina, inb, cin,clk);
output [3:0] sum;
output cout;
input [3:0] ina, inb;
input cin,clk;
reg[3:0] tempa, tempb, sum;
reg cout;
reg tempc; always @(posedge clk)
begin
tempa = ina;
tempb = inb;
tempc = cin;
end always @(posedge clk)
begin
{cout, sum} = tempa+ tempb + tempc;
end
endmodule
testbench代码如下,我们用readmemb函数读入激励,并在for循环中赋值给ina,inb
`timescale 1ns/1ns
`include "adder4.v" module adder_rw_tb;
reg[3:0] ina,inb;
reg cin;
reg clk = 0;
wire[3:0] sum;
wire cout;
reg[3:0] inam[0:3];
reg[3:0] inbm[0:3];
integer i;
always #10 clk =~ clk; initial
begin
$readmemb("x1.txt",inam);
$readmemb("y1.txt",inbm);
for(i=0;i<4;i=i+1)
begin
#20 ina = inam[i];
inb = inbm[i];
end
end initial
begin
cin=0;
repeat(2)
#200 cin = {$random} % 16;
end adder4 adder4_0(
.clk(clk),
.sum(sum),
.cout(cout),
.ina(ina),
.inb(inb),
.cin(cin)
);
initial
begin
$monitor($time,,,"%b + %b + %b = {%b,%b}", ina, inb, cin,cout,sum);
#400 $finish;
end initial
begin
$dumpfile("dump.vcd");
$dumpvars;
end
endmodule
用vcs编译后,run simv
Contains Synopsys proprietary information.
Compiler version M-2017.03-SP2-11; Runtime version M-2017.03-SP2-11; Dec 21 19:34 2018
0 xxxx + xxxx + 0 = {x,xxxx}
20 1111 + 1101 + 0 = {x,xxxx}
30 1111 + 1101 + 0 = {1,1100}
40 1010 + 0101 + 0 = {1,1100}
50 1010 + 0101 + 0 = {0,1111}
60 1110 + 1010 + 0 = {0,1111}
70 1110 + 1010 + 0 = {1,1000}
80 0001 + 0001 + 0 = {1,1000}
90 0001 + 0001 + 0 = {0,0010}
$finish called from file "adder_rw_tb.v", line 44.
$finish at simulation time 400
V C S S i m u l a t i o n R e p o r t
在verdi中装入dump.vcd,波形如下:
修改testbench代码,用fdisplay把输出写到文件里面。
`timescale 1ns/1ns
`include "adder4.v" module adder_rw_tb;
reg[3:0] ina,inb;
reg cin;
reg clk = 0;
wire[3:0] sum;
wire cout;
reg[3:0] inam[0:3];
reg[3:0] inbm[0:3];
integer i;
integer fd;
always #10 clk =~ clk; initial
begin
$readmemb("x1.txt",inam);
$readmemb("y1.txt",inbm);
fd = $fopen("z1.txt");
for(i=1;i<4;i=i+1)
begin
#20 ina = inam[i];
inb = inbm[i];
$fdisplay(fd,"%b %b %b %b",ina, inb,sum,cout);
end
#20
$fdisplay(fd,"%b %b %b %b",ina, inb,sum,cout);
$fclose(fd);
end initial
begin
cin=0;
repeat(2)
#200 cin = {$random} % 16;
end adder4 adder4_0(
.clk(clk),
.sum(sum),
.cout(cout),
.ina(ina),
.inb(inb),
.cin(cin)
);
initial
begin
$monitor($time,,,"%b + %b + %b = {%b,%b}", ina, inb, cin,cout,sum);
#400 $finish;
end initial
begin
$dumpfile("dump.vcd");
$dumpvars;
end
endmodule
编译执行程序后,可以得到z1.txt
1111 1101 xxxx x
1010 0101 1100 1
1110 1010 1111 0
0001 0001 1000 1
0001 0001 0010 0
我们也可以把两个输入数据合在一个文件xy.txt里面,
1111 1101
1010 0101
1110 1010
0001 0001
用fscanf来读入激励数据,代码如下:
`timescale 1ns/1ns
`include "adder4.v" module adder_rw_tb;
reg[3:0] ina,inb;
reg cin;
reg clk = 0;
wire[3:0] sum;
wire cout;
reg[3:0] inam[0:3];
reg[3:0] inbm[0:3];
integer i;
integer fd,fd_r;
always #10 clk =~ clk; initial
begin
fd_r = $fopen("xy.txt","r");
fd = $fopen("z.txt","w");
for(i=0;i<4;i=i+1)
begin
#20
$fscanf(fd_r, "%d %d",ina,inb);
$fwrite(fd,"%b %b %b %b\n",ina, inb,sum,cout);
end
#20
$fwrite(fd,"%b %b %b %b\n",ina, inb,sum,cout);
$fclose(fd);
end initial
begin
cin=0;
repeat(2)
#200 cin = {$random} % 16;
end adder4 adder4_0(
.clk(clk),
.sum(sum),
.cout(cout),
.ina(ina),
.inb(inb),
.cin(cin)
);
initial
begin
$monitor($time,,,"%b + %b + %b = {%b,%b}", ina, inb, cin,cout,sum);
#400 $finish;
end initial
begin
$dumpfile("dump.vcd");
$dumpvars;
end
endmodule
Chronologic VCS simulator copyright 1991-2017
Contains Synopsys proprietary information.
Compiler version M-2017.03-SP2-11; Runtime version M-2017.03-SP2-11; Dec 21 20:13 2018
0 xxxx + xxxx + 0 = {x,xxxx}
20 0111 + 1101 + 0 = {x,xxxx}
30 0111 + 1101 + 0 = {1,0100}
40 0010 + 0101 + 0 = {1,0100}
50 0010 + 0101 + 0 = {0,0111}
60 0110 + 0010 + 0 = {0,0111}
70 0110 + 0010 + 0 = {0,1000}
80 0001 + 0001 + 0 = {0,1000}
90 0001 + 0001 + 0 = {0,0010}
写入z.txt数据为:
0111 1101 xxxx x
0010 0101 0100 1
0110 0010 0111 0
0001 0001 1000 0
0001 0001 0010 0