比赛的时候遇到这种题,只能怪自己高数学得不好,看着别人秒。。。。
由4种字母组成,A和C只能出现偶数次。
构造指数级生成函数:(1+x/1!+x^2/2!+x^3/3!……)^2*(1+x^2/2!+x^4/4!+x^6/6!……)^2.
前面是B和D的情况,可以任意取,但是相同字母一样,所以要除去排列数。后者是A和C的情况,只能取偶数个情况。
根据泰勒展开,e^x在x0=0点的n阶泰勒多项式为 1+x/1!+x^2/2!+x^3/3!……
而后者也可以进行调整,需要把奇数项去掉,则e^(-x)的展开式为1-x/1!+X^2/2!-X^3/3!……
所以后者可以化简为(e^x+e^(-x))/2。则原式为 (e^x)^2 * ((e^x*e^(-x))/2)^2
整理得到e^4x+2*e^2x+1。
又由上面的泰勒展开
e^4x = 1 + (4x)/1! + (4x)^2/2! + (4x)^3/3! + ... + (4x)^n/n!;
e^2x = 1 + (2x)/1! + (2x)^2/2! + (2x)^3/3! + ... + (2x)^n/n!;
对于系数为n的系数为(4^n+2*2^n)/4=4^(n-1)+2^(n-1);
快速幂搞之。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<cmath>
#define LL long long
#define MOD 100
#define eps 1e-6
#define N 100010
#define zero(a) fabs(a)<eps
using namespace std;
int PowMod(int a,LL b){
int ret=;
while(b){
if(b&)
ret=(ret*a)%MOD;
a=(a*a)%MOD;
b>>=;
}
return ret;
}
int main(){
int t;
while(scanf("%d",&t)!=EOF&&t){
int cas=;
LL n;
while(t--){
scanf("%I64d",&n);
printf("Case %d: %d\n",++cas,(PowMod(,n-)+PowMod(,n-))%MOD);
}
printf("\n");
}
return ;
}