描述
Flappy Bird 是一款风靡一时的休闲手机游戏。玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。
为了简化问题,我们对游戏规则进行了简化和改编:
- 游戏界面是一个长为 n,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度)。
- 小鸟始终在游戏界面内移动。小鸟从游戏界面最左边 任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
- 小鸟每个单位时间沿横坐标方向右移的距离为 1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度 X,每个单位时间可以点击多次,效果叠加; 如果不点击屏幕,小鸟就会下降一定高度 Y。小鸟位于横坐标方向不同位置时,上 升的高度 X 和下降的高度 Y 可能互不相同。
- 小鸟高度等于 0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。
现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。
格式
输入格式
第 1 行有 3 个整数 n,m,k,分别表示游戏界面的长度,高度和水管的数量,每两个 整数之间用一个空格隔开;
接下来的 n 行,每行 2 个用一个空格隔开的整数 X 和 Y,依次表示在横坐标位置 0~n-1 上玩家点击屏幕后,小鸟在下一位置上升的高度 X,以及在这个位置上玩家不点击屏幕时, 小鸟在下一位置下降的高度 Y。
接下来 k 行,每行 3 个整数 P,L,H,每两个整数之间用一个空格隔开。每行表示一个管道,其中 P 表示管道的横坐标,L 表示此管道缝隙的下边沿高度为 L,H 表示管道缝隙上边沿的高度(输入数据保证 P 各不相同,但不保证按照大小顺序给出)。
输出格式
共两行。
第一行,包含一个整数,如果可以成功完成游戏,则输出 1,否则输出 0。 第二行,包含一个整数,如果第一行为 1,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。
样例1
样例输入1
样例输出1
样例2
样例输入2
样例输出2
限制
对于 30%的数据:5≤n≤10,5≤m≤10,k=0,保证存在一组最优解使得同一单位时间最多点击屏幕 3 次;
对于 50%的数据:5≤n≤20,5≤m≤10,保证存在一组最优解使得同一单位时间最多点击屏幕 3 次;
对于 70%的数据:5≤n≤1000,5≤m≤100;
对于 100%的数据:5≤n≤10000,5≤m≤1000,0≤k<n,0<X<m,0<Y<m,0<P<n,0≤L<H ≤m,L+1<H。
提示
如下图所示,蓝色直线表示小鸟的飞行轨迹,红色直线表示管道。
来源
NOIP2014 提高组 Day1
不完全的暴搜“伪代码”如下:
dfs(x,y,click)
if click>minnum exit
if y<=0 then exit
if x==n then record(click) AND exit
dfs(x+1,y-Y[x],click)
for i->1 to (m-y)/X[x]
if uplim[x]<y+i*X[x]<downlim[x] then dfs(x+1,y+i*X[x],click+i)
else exit
由此,我思考出了一个不完全正确的动规“伪代码”:
dynamic programming
c=1
downlim[0]->0
uplim[0]->m+1
for i->1 to n
{
c->c^1
flag->false
for j->downlim[i] to uplim[i]
{
tmp->INF
if j+Y[i-1]<=m AND vis[j+Y[i-1]][c^1]
then tmp->min(tmp,f[j+Y[i-1]][c^1])
flag->true
for k->1 to INF
{
if j-k*X[i-1]>0 AND f[j-k*X[i-1]][c^1]+k<tmp AND vis[j-k*X[i-1]][c^1]
then tmp->f[j-k*X[i-1]][c^1]+k
flag->true
else break
}
if tmp==INF
then vis[j][c]->false
else vis[j][c]->true AND f[j][c]->tmp
}
if flag==false
then record(i) AND exit
}
因而得出第一个动规程序,不过连样例都过不了
#include<cstdio>
#include<cstring>
#include<iostream>
#define INF 0x3f3f3f3f
using namespace std;
inline int read()
{
int x=0,c=getchar(),f=1;
while(c<48||c>57){if(c=='-')f=-1;c=getchar();}
while(c>47&&c<58)x=x*10+c-48,c=getchar();
return x*f;
}
bool vis[1111][3];
int f[1111][3],roadblocks[11111];
int n,M,K,X[11111],Y[11111],downlim[11111],uplim[11111];
void dynamic_prog()
{
int c=0;
memset(vis,false,sizeof(vis));
for(int j=1;j<=M;j++)
vis[j][c]=true;
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++){
c^=1;
bool advanced=false;
for(int j=downlim[i]+1;j<=uplim[i]-1;j++){
int tmp=INF;
if(j+Y[i-1]<=M&&vis[j+Y[i-1]][1^c]){
advanced=true;
tmp=min(tmp,f[j+Y[i-1]][1^c]);
}
for(int k=1;;k++){
if(j-k*X[i-1]>0){
if(vis[j-k*X[i-1]][1^c]&&f[j-k*X[i-1]][1^c]+k<tmp){
advanced=true;
tmp=f[j-k*X[i-1]][1^c]+k;
}
}
else break;
}
if(tmp==INF)vis[j][c]=false;
else vis[j][c]=true,f[j][c]=tmp;
}
if(!advanced){
printf("0\n%d\n",roadblocks[i]);
return;
}
}
int ans=INF;
for(int j=1;j<=M;j++)
if(vis[j][c])
ans=min(ans,f[j][c]);
printf("1\n%d\n",ans);
}
int main()
{
n=read(),M=read(),K=read();
for(int i=0;i<n;i++)
X[i]=read(),Y[i]=read();
for(int i=0;i<=n;i++)
downlim[i]=0,uplim[i]=M+1;
for(int i=1;i<=K;i++){
int x=read();
downlim[x]=read();
uplim[x]=read();
roadblocks[x]++;
}
for(int i=1;i<=n;i++)
roadblocks[i]+=roadblocks[i-1];
dynamic_prog();
return 0;
}
观察一下,其实我的dp状态转移方程部分的coding思路是没错的,并且添加了滚动数组。
就是:f[i][j]=min{f[i-1][j+y[i]],f[i-1][j-k*x[i]]+1}
那么,出的问题在哪里呢?
只是有几个问题没考虑清楚,例如在玩此类游戏时小鸟飞到屏幕顶端后,不断地按屏幕,小鸟就会一直“贴”在顶部飞行,这样的情况没有考虑清楚。
还有一些问题,例如什么初始化的问题,这里就不赘述了,直接放正确程序吧:
测试数据 #0:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #1:
Accepted, time = 0 ms, mem = 49040 KiB, score = 5
测试数据 #2:
Accepted, time = 0 ms, mem = 49040 KiB, score = 5
测试数据 #3:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #4:
Accepted, time = 0 ms, mem = 49040 KiB, score = 5
测试数据 #5:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #6:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #7:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #8:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #9:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #10:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #11:
Accepted, time = 0 ms, mem = 49040 KiB, score = 5
测试数据 #12:
Accepted, time = 0 ms, mem = 49036 KiB, score = 5
测试数据 #13:
Accepted, time = 15 ms, mem = 49036 KiB, score = 5
测试数据 #14:
Accepted, time = 15 ms, mem = 49040 KiB, score = 5
测试数据 #15:
Accepted, time = 31 ms, mem = 49040 KiB, score = 5
测试数据 #16:
Accepted, time = 0 ms, mem = 49040 KiB, score = 5
测试数据 #17:
Accepted, time = 62 ms, mem = 49040 KiB, score = 5
测试数据 #18:
Accepted, time = 46 ms, mem = 49040 KiB, score = 5
测试数据 #19:
Accepted, time = 78 ms, mem = 49036 KiB, score = 5
Accepted, time = 247 ms, mem = 49040 KiB, score = 100
#include<stdio.h>
#include<stdlib.h>
#define inf 0x3f3f3f3f
using namespace std;
inline int mn(int a,int b)
{
if(a<b)return a;
return b;
}
int dp[11111][1111],roadblocks[11111];
int n,m,k,x[11111],y[11111],down[11111],up[11111];
void dynamic_prog()
{
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
dp[i][j]=inf;
if(j>x[i-1])
dp[i][j]=mn(dp[i][j],mn(dp[i-1][j-x[i-1]],dp[i][j-x[i-1]])+1);
}
for(int j=m-x[i-1];j<=m;j++)
dp[i][m]=mn(dp[i][m],mn(dp[i-1][j],dp[i][j])+1);
for(int j=down[i]+1;j<=up[i]-1;j++)
if(j+y[i-1]<=m)dp[i][j]=mn(dp[i][j],dp[i-1][j+y[i-1]]);
for(int j=1;j<=down[i];j++)
dp[i][j]=inf;
for(int j=up[i];j<=m;j++)
dp[i][j]=inf;
bool advanced=false;
for(int j=1;j<=m;j++)
if(dp[i][j]^inf)
{advanced=true;break;}
if(!advanced){
printf("0\n%d\n",roadblocks[i-1]);
return;
}
}
int ans=inf;
for(int j=1;j<=m;j++)
ans=mn(ans,dp[n][j]);
printf("1\n%d\n",ans);
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=0;i<n;i++)
scanf("%d%d",&x[i],&y[i]);
for(int i=0;i<=n;i++)
down[i]=0,up[i]=m+1;
for(int i=0;i<k;i++){
int c;
scanf("%d",&c);
scanf("%d%d",&down[c],&up[c]);
++roadblocks[c];
}
for(int i=1;i<=n;i++)
roadblocks[i]+=roadblocks[i-1];
dynamic_prog();
return 0;
}
思考了一天(~弱~),总算有结果了O_O