题意:n个点,m条有向边,指定k个点,问你其中最近的两点距离为多少
思路:这题的思路很巧妙,如果我们直接枚举两点做最短路那就要做C(k,2)次。但是我们换个思路,我们把k个点按照二进制每一位的0和1分类logn次,然后做集合最短距离。因为任意两个不等的数,总有一位不一样,所以每个点都有机会和其他点在不同集合。那么这样就花了logn次枚举了所有情况。集合最短距离可以指定一个超级源点和超级汇点,然后做两点最短路。
代码:
#include<cmath>
#include<set>
#include<queue>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = + ;
const ull seed = ;
const int INF = 0x3f3f3f3f;
const int MOD = ;
struct Edge{
int to, w, next;
}edge[maxn * ];
struct node{
int v, w;
node(int _v = , int _w = ): v(_v), w(_w){}
bool operator < (const node r) const{
return w > r.w;
}
};
int head[maxn], tot;
void addEdge(int u, int v, int w){
edge[tot].w = w;
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
int n, m, k;
int dis[maxn], q[maxn];
bool vis[maxn];
int dij(int s, int e){
memset(vis, false, sizeof(vis));
memset(dis, INF, sizeof(dis));
priority_queue<node> Q;
while(!Q.empty()) Q.pop();
dis[s] = ;
Q.push(node(s, ));
node tmp;
while(!Q.empty()){
tmp = Q.top();
Q.pop();
int u = tmp.v;
if(vis[u]) continue;
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v] && dis[v] > dis[u] + edge[i].w){
dis[v] = dis[u] + edge[i].w;
Q.push(node(v, dis[v]));
}
}
}
return dis[e];
}
void init(){
memset(head, -, sizeof(head));
tot = ;
}
int a[maxn], b[maxn], w[maxn];
int main(){
int T, ca = ;
scanf("%d", &T);
while(T--){
scanf("%d%d", &n, &m);
for(int i = ; i <= m; i++){
scanf("%d%d%d", &a[i], &b[i], &w[i]);
}
scanf("%d", &k);
for(int i = ; i <= k; i++){
scanf("%d", &q[i]);
}
int ans = INF, p = ;
while(n >> p){
init();
for(int i = ; i <= m; i++)
addEdge(a[i], b[i], w[i]);
for(int i = ; i <= k; i++){
if((q[i] >> p) & ){
addEdge(, q[i], );
}
else{
addEdge(q[i], n + , );
}
}
ans = min(ans, dij(, n + ));
init();
for(int i = ; i <= m; i++)
addEdge(a[i], b[i], w[i]);
for(int i = ; i <= k; i++){
if((q[i] >> p) & ){
addEdge(q[i], , );
}
else{
addEdge(n + , q[i], );
}
}
ans = min(ans, dij(n + , ));
p++;
}
printf("Case #%d: %d\n", ca++, ans);
}
return ;
}