★append方法可以很方便地拼接两个DataFrame
 df1.append(df2)

 >    A  B
> 1 A1 B1
> 2 A2 B2
> 3 A3 B3
> 4 A4 B4
★但数据量大时生成DataFrame,应避免使用append方法
因为:
       与python列表中的append和extend方法不同的是pandas的append方法不会改变原来的对象,而是创建一个新的对象。当然,这样的话会使效率变低而且会占用更多内存,所以如果你有很多数据需要append,建议使用列表,然后传给DataFrame。
       建议直接用空列表依次装好各列的数据,再统一生成总的dataframe表,如下例所示。
 
 import pandas as pd
import numpy as np
from datetime import datetime # 模拟生成较大批次量的数据
df_list = [pd.DataFrame({
'a': [np.random.rand() for _ in range(20000)],
'b': [np.random.rand() for _ in range(20000)]
}) for i in range(800)] # %% 第一种方式(运行时间最长——1分钟,内存占用一般)
start1 = datetime.now()
res1 = pd.DataFrame()
for df in df_list:
res1 = res1.append(df)
print('append耗时:%s秒' % (datetime.now() - start1)) # %% 第二种方式(运行时间相对第一种少一些——46秒,但内存接近溢出)
start2 = datetime.now()
dict_list = [df.to_dict() for df in df_list]
combine_dict = {}
i = 0
for dic in dict_list:
length = len(list(dic.values())[0])
for idx in range(length):
combine_dict[i] = {k: dic[k][idx] for k in dic.keys()}
i += 1
res2 = pd.DataFrame.from_dict(combine_dict, 'index')
print('dict合并方式耗时:%s秒' % (datetime.now() - start2)) # %% 第三种方式:list装好所有值(运行时间最短——4秒多,内存占用低)
start3 = datetime.now()
columns = ['a', 'b']
a_list = []
b_list = [] for df in df_list:
a_list.extend(df['a'])
b_list.extend(df['b'])
res3 = pd.DataFrame({'a': a_list, 'b': b_list})
print('list装好所有值方式耗时:%s秒' % (datetime.now() - start3))
04-22 10:34