为了更好的实现负载均衡和消息的顺序性,Kafka Producer可以通过分发策略发送给指定的Partition。Kafka Java客户端有默认的Partitioner,平均的向目标topic的各个Partition中生产数据,如果想要控制消息的分发策略,有两种方式,一种是在发送前创建ProducerRecord时指定分区(针对单个消息),另一种就是就是根据Key自己写算法。继承Partitioner接口,实现其partition方法。并且配置启动参数 props.put("partitioner.class","com.example.demo.MyPartitioner"),示例代码如下:

  自定义的partitoner

package com.example.demo;

import java.util.Map;

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster; public class MyPartitioner implements Partitioner { @Override
public void configure(Map<String, ?> configs) { } @Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
if (Integer.parseInt((String)key)%3==1)
return 0;
else if (Integer.parseInt((String)key)%3==2)
return 1;
else return 2;
} @Override
public void close() { } }

  producer类中指定partitioner.class

package com.example.demo;

import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord; public class MyProducer { public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.1.124:9092");
props.put("acks", "all");
props.put("retries", 0);
props.put("batch.size", 16384);
props.put("linger.ms", 1);
props.put("partitioner.class", "com.example.demo.MyPartitioner");
props.put("buffer.memory", 33554432);
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); Producer<String, String> producer = new KafkaProducer<>(props);
for (int i = 0; i < 100; i++)
producer.send(new ProducerRecord<String, String>("powerTopic", Integer.toString(i), Integer.toString(i))); producer.close(); }
}

  测试consumer

  

package com.example.demo;

import java.util.Arrays;
import java.util.Properties; import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; public class MyAutoCommitConsumer { public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "192.168.1.124:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "true");
props.put("auto.commit.interval.ms", "1000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
@SuppressWarnings("resource")
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("powerTopic"));
while (true) {
ConsumerRecords<String, String> records = consumer.poll(100);
for (ConsumerRecord<String, String> record : records)
System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n",record.partition(), record.offset(), record.key(), record.value());
}
}
}

  启动zookeeper和kafka,使用命令行新建一个 3个partition的topic:powerTopic,为了方便查看结果,将producer的循环次数设置为15,运行consumer和producer代码,效果如下:

kafka producer自定义partitioner和consumer多线程-LMLPHP

  虽然我们有三个分区,但是我们group组中只有一个消费者,所以三个分区的消息被这个消费者顺序消费,下面我们实现一个消费者组,示例代码如下:

  ConsumerThread类

package com.example.demo;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer; import java.util.Arrays;
import java.util.Properties; public class ConsumerThread implements Runnable {
private KafkaConsumer<String,String> kafkaConsumer;
private final String topic; public ConsumerThread(String brokers,String groupId,String topic){
Properties properties = buildKafkaProperty(brokers,groupId);
this.topic = topic;
this.kafkaConsumer = new KafkaConsumer<String, String>(properties);
this.kafkaConsumer.subscribe(Arrays.asList(this.topic));
} private static Properties buildKafkaProperty(String brokers,String groupId){
Properties properties = new Properties();
properties.put("bootstrap.servers", brokers);
properties.put("group.id", groupId);
properties.put("enable.auto.commit", "true");
properties.put("auto.commit.interval.ms", "1000");
properties.put("session.timeout.ms", "30000");
properties.put("auto.offset.reset", "earliest");
properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
return properties;
} @Override
public void run() {
while (true){
ConsumerRecords<String,String> consumerRecords = kafkaConsumer.poll(100);
for(ConsumerRecord<String,String> item : consumerRecords){
System.out.println(Thread.currentThread().getName());
System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n",item.partition(), item.offset(), item.key(), item.value());
}
}
}
}

  ConsumerGroup类

package com.example.demo;

import java.util.ArrayList;
import java.util.List; public class ConsumerGroup {
private List<ConsumerThread> consumerThreadList = new ArrayList<ConsumerThread>(); public ConsumerGroup(String brokers,String groupId,String topic,int consumerNumber){
for(int i = 0; i< consumerNumber;i++){
ConsumerThread consumerThread = new ConsumerThread(brokers,groupId,topic);
consumerThreadList.add(consumerThread);
}
} public void start(){
for (ConsumerThread item : consumerThreadList){
Thread thread = new Thread(item);
thread.start();
}
}
}

  消费者组启动类ConsumerGroupMain

package com.example.demo;

public class ConsumerGroupMain {

    public static void main(String[] args){
String brokers = "192.168.1.124:9092";
String groupId = "group01";
String topic = "powerTopic";
int consumerNumber = 3;
ConsumerGroup consumerGroup = new ConsumerGroup(brokers,groupId,topic,consumerNumber);
consumerGroup.start();
}
}

  启动消费者和生产者,可以看到不同的分区是不同的线程去执行的效果如下:

kafka producer自定义partitioner和consumer多线程-LMLPHP

05-11 20:18