Principal Component Analysis (PCA)
• Probabilistic PCA
• Factor Analysis (FA)
• Sammon mapping
• Linear Discriminant Analysis (LDA)
• Multidimensional scaling (MDS)
• Isomap
• Landmark Isomap
• Local Linear Embedding (LLE)
• Laplacian Eigenmaps
• Hessian LLE
• Local Tangent Space Alignment (LTSA)
• Conformal Eigenmaps (extension of LLE)
• Maximum Variance Unfolding (extension of LLE)
• Landmark MVU (LandmarkMVU)
• Fast Maximum Variance Unfolding (FastMVU)
• Kernel PCA
• Generalized Discriminant Analysis (GDA)
• Diffusion maps
• Neighborhood Preserving Embedding (NPE)
• Locality Preserving Projection (LPP)
• Linear Local Tangent Space Alignment (LLTSA)
• Stochastic Proximity Embedding (SPE)
• Multilayer autoencoders (training by RBM + backpropagation or by an evolutionary algorithm)
• Local Linear Coordination (LLC)
• Manifold charting
• Coordinated Factor Analysis (CFA)
• Gaussian Process Latent Variable Model (GPLVM)
• Stochastic Neighbor Embedding (SNE)
• Symmetric SNE (SymSNE)
• new: t-Distributed Stochastic Neighbor Embedding (t-SNE)
• new: Neighborhood Components Analysis (NCA)
• new: Maximally Collapsing Metric Learning (MCML)
Matlab Toolbox for Dimensionality Reduction
降维方法包括: