严格次小生成树,关键是“严格”,如果是不严格的其实只需要枚举每条不在最小生成树的边,如果得到边权和大于等于最小生成树的结束就行。原理就是因为Kruskal非常贪心,只要随便改一条边就能得到一个非严格的次小生成树。然而是严格的QAQ,于是得搞点别的东西来实现“严格”,维护个次大值就行。依次枚举每条边,如果这条边和加上这条边构成的环中最大的边边权相等,取次大值,否则取最大值。

参考代码:

#include<cstdio>
#include<algorithm>
#define ll long long
#include<iostream>
#define A(x) cout << #x << " " << x << endl;
#define qwq 900100
const ll inf = ;
using namespace std;
struct Node
{
ll u,v,val,nxt;
bool used;
} a[ * qwq],b[ * qwq];
ll head[qwq];
ll f[qwq];
ll find(ll x) {
if(x == f[x]) return x;
return f[x] = find(f[x]);
}
ll n,m,cnt;
void add(ll u,ll v,ll w) {
cnt++;
b[cnt].nxt = head[u];
head[u] = cnt;
b[cnt].val = w;
b[cnt].v = v;
}
bool cmp(Node a,Node b) {
return a.val < b.val;
}
ll ans = 0ll;
void kruskal() {
ll k = ;
for(ll i = ; i <= n; i++) f[i] = i;
for(ll i = ; i <= m; i++)
{
ll f1 = find(a[i].u);
ll f2 = find(a[i].v);
if(f1 != f2) {
f[f1] = f2;
k++;
ans += a[i].val;
add(a[i].u,a[i].v,a[i].val);
add(a[i].v,a[i].u,a[i].val);
a[i].used = ;
if(k == n - ) break;
}
}
}
ll fa[qwq][],dep[qwq];
ll maxx[qwq][],lmax[qwq][];
void dfs(ll u,ll pa) {
fa[u][] = pa;
for(int i = head[u]; i; i = b[i].nxt) {
ll v = b[i].v;
if(v == pa) continue;
dep[v] = dep[u] + 1ll;
maxx[v][] = b[i].val;
lmax[v][] = -inf;
dfs(v,u);
}
}
void max_set() {
for(ll i = ; i <= ; i++)
for(ll u = ; u <= n; u++) {
fa[u][i] = fa[fa[u][i - ]][i - ];
maxx[u][i] = max(maxx[u][i - ],maxx[fa[u][i - ]][i - ]);
lmax[u][i] = max(lmax[u][i - ],lmax[fa[u][i - ]][i - ]);
if(maxx[u][i - ] > maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[fa[u][i - ]][i - ]);
else if(maxx[u][i - ] < maxx[fa[u][i - ]][i - ])
lmax[u][i] = max(lmax[u][i],maxx[u][i - ]);
}
}
ll lca(ll x,ll y) {
if(dep[x] < dep[y]) swap(x,y);
for(ll i = ; i >= ; i--)
if(dep[fa[x][i]] >= dep[y])
x = fa[x][i];
if(x == y) return x;
for(ll i = ; i >= ; i--)
if(fa[x][i] ^ fa[y][i]) {
x = fa[x][i];
y = fa[y][i];
}
return fa[x][];
}
ll find_max(ll u,ll v,ll qaq) {
ll Ans = -inf;
for(ll i = ; i >= ; i--) {
if(dep[fa[u][i]] >= dep[v]) {
if(qaq != maxx[u][i])Ans = max(Ans,maxx[u][i]);
else Ans = max(Ans,lmax[u][i]);
u = fa[u][i];
}
}
return Ans;
}
int main()
{
scanf("%lld %lld",&n,&m);
for(ll i = ;i <= m;i++)
{
scanf("%lld %lld %lld",&a[i].u,&a[i].v,&a[i].val);
}
sort(a + ,a + + m,cmp);
kruskal();
lmax[][] = -inf;
dep[] = 1ll;
dfs(,-);
max_set();
ll answ = inf;
for(ll i = ; i <= m; i++)
{
if(!a[i].used)
{
ll u = a[i].u;
ll v = a[i].v;
ll d = a[i].val;
ll Lca = lca(u,v);
ll maxu = find_max(u,Lca,d);
ll maxv = find_max(v,Lca,d);
answ = min(answ,ans - max(maxu,maxv) + d);
}
}
printf("%lld",answ);
}
05-11 14:42