1.集群高可靠

①搭建kafka集群(略)

②重点配置项(每个broker配置相同,只有broker.id不一样)

broker.id=1     当前机器在集群中的唯一标识,和zookeeper的myid性质一样

listeners=PLAINTEXT://10.22.0.13:9092    最好用真实的IP

advertised.listeners=PLAINTEXT://10.22.0.13:9092      最好用真实的IP hostname,port配置过时

num.partitions=3    新建topic 默认分区数

default.replication.factor=3  新建topic 默认副本集数

offsets.topic.replication.factor=3  副本集因子  (必须配置为大于1,小于或者等于broker数,不然当消费者的协同节点broker宕机了,不会重新选举,导致消费者dead,达不到集群高可靠目的)

zookeeper.connect=10.22.0.13:2182,10.22.0.14:2182,10.22.0.15:2182   zookeeper地址

log.dirs=/home/txc/kafka1/kafkalogs  kafka数据日志保存路径

2.消息至少消费一次

消费者默认情况下,enable.auto.commit=true 消费者的offset消费者的offset将在后台周期性的提交,当消息处理失败时,偏移量offset已经提交了,导致消息丢失

要保证消费至少消费一次,首先enable.auto.commit=false,然后每次消息处理成功后,手动提交偏移量offset, consumer.commitAsync();

3.自定义分区(尽可能让数据在分区中均匀分布)

Kafka中,topic是逻辑上的概念,而partition是物理上的概念。不用担心,这些对用户来说是透明的。生产者(producer)只关心自己将消息发布到哪个topic,而消费者(consumer)只关心自己订阅了哪个topic上的消息,至少topic上的消息分布在哪些partition节点上,它本身并不关心。

如果没有分区的概念,那么topic的消息集合将集中于某一台服务器上,单节点的存储性能马上将成为瓶颈,当访问该topic存取数据时,吞吐也将成为瓶颈。 
介于此,kafka的设计方案是,生产者在生产数据的时候,可以为每条消息人为的指定key,这样消息被发送到broker时,会根据分区规则,选择消息将被存储到哪一个分区中。
如果分区规则设置合理,那么所有的消息将会被均匀/线性的分布到不同的分区中,这样就实现了负载均衡和水平扩展。另外,在消费者端,同一个消费组可以多线程并发的从多个分区中 同时消费数据。
上述分区规则,实际上是实现了kafka.producer.Partitioner接口的一个类,这个实现类可以根据自己的业务规则进行自定义制定,如根据hash算法指定分区的分布规则。 如以下这个类,我们先获取
key的hashcode值,再跟分区数量(配置文件中为numPartitions)做模运算,结果值作为分区存储位置,这样可以实现数据均匀线性的分布。

①自定义TxcPartitioner类

public class TxcPartitioner implements Partitioner{

    @Override
public void configure(Map<String, ?> arg0) { } @Override
public void close() { } @Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
int size = partitions.size();
    //如果消息的 key 为 null,默认分配到指定分区
if(keyBytes == null) {
return 0;
}
     //如果 key 不为 null,并且使用了默认的分区器,kafka 会使用自己的 hash 算法对 key 取 hash 值,
//使用 hash 值与 partition 数量取模,从而确定发送到哪个分区。
//注意:此时 key 相同的消息会发送到相同的分区(只要 partition 的数量不变化)     return Utils.toPositive(Utils.murmur2(keyBytes)) % size;
}

②发送消息的方法如下

public void send(String topic,String key,RequestMessage message){
try {
if(kafkaProducer != null) {
ProducerRecord<String, String> record = new ProducerRecord<String, String>(topic,key,JSONObject.toJSONString(message));
Future<RecordMetadata> future = kafkaProducer.send(record);
RecordMetadata metadata = future.get();
if(metadata != null) {
sysLog.debug("【Kafka message send success,topic = {}, partition is {} 】 " , metadata.topic(),metadata.partition());
}else {
sysLog.error("【Kafka message send fail 】");
throw new KafkaSendException("Kafka message send fail");
}
}else {
sysLog.error("【TxcProducer is not init】");
throw new KafkaInitException("TxcProducer is not init");
} }catch(Exception e){
sysLog.error("【Kafka message send fail , exception = {}】 ",ExceptionUtil.collectExceptionStackMsg(e));
throw new KafkaSendException("Kafka message send fail");
}
}

③生产者配置中添加配置

//设置自定义分区
properties.put(TxcParameType.partitioner_class.getName(), TxcPartitioner.class.getName());

注意:之所以需要自定义分区,是因为同一个分区的消息可以保证严格的顺序性,通过自定义分区设置的key值(比如交易流水号)可以让同一笔交易的消息严格按照顺序发送接收

4.消息到达可靠

保证消息到达可靠,生产者的配置项acks=all;

生产者需要leader确认请求完成之前接收的应答数。此配置控制了发送消息的耐用性,支持以下配置:

acks=0 如果设置为0,那么生产者将不等待任何消息确认。消息将立刻天际到socket缓冲区并考虑发送。在这种情况下不能保障消息被服务器接收到。并且重试机制不会生效(因为客户端不知道故障了没有)。每个消息返回的offset始终设置为-1。

acks=1,这意味着leader写入消息到本地日志就立即响应,而不等待所有follower应答。在这种情况下,如果响应消息之后但follower还未复制之前leader立即故障,那么消息将会丢失。

acks=all 这意味着leader将等待所有副本同步后应答消息。此配置保障消息不会丢失。这是最强壮的可用性保障。等价于acks=-1。

05-08 15:09