非常有趣的题
题意:求1~N!中有多少个与M!互质的数,T组询问,答案对R取模
题解:
首先,因为N>M,所以N!>M!,所以答案一定有一部分是φ(M!)
接下来做一些分析:
引理:
若x与p互质,则x+kp与p互质(k∈Z)
证明:
反证法:假设x+kp与p不互质,则设gcd(x+kp,p)=d(d!=1),那么设p=k1d,x+kp=k2d,于是:
x=k2d-kk1d
所以x=(k2-kk1)d
那么gcd(x,p)=d
这与x与p互质相矛盾,假设不成立,原命题得证
那么,我们可以将N!分组,每组大小为M!(即将N!中每个数表示成kM!+c),那么每部分与M!互质的数的个数都是φ(M!),合起来就是N!/M!*φ(M!)
预处理即可,需要使用unsigned来卡常
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll unsigned int
#define ull unsigned long long
#define maxn 10000000
using namespace std;
ll n,m;
ll T,R;
ll inv[maxn+];
ll mul[maxn+];
ll pri[maxn+];
ll phi[maxn+];
bool used[maxn+];
int tot=;
void init()
{
phi[]=inv[]=inv[]=mul[]=mul[]=;
for(int i=;i<=maxn;i++)
{
inv[i]=(ull)(R-R/i)*inv[R%i]%R;
if(!used[i])
{
pri[++tot]=i;
}
for(int j=;j<=tot&&i*pri[j]<=maxn;j++)
{
used[i*pri[j]]=;
if(i%pri[j]==)
{
break;
}
}
}
for(int i=;i<=maxn;i++)
{
mul[i]=(ull)mul[i-]*i%R;
inv[i]=(ull)inv[i-]*inv[i]%R;
if(!used[i])
{
phi[i]=(ull)phi[i-]*(i-)%R;
}else
{
phi[i]=(ull)phi[i-]*i%R;
}
}
}
int main()
{
scanf("%u%u",&T,&R);
init();
while(T--)
{
scanf("%u%u",&n,&m);
printf("%u\n",(ull)mul[n]*inv[m]%R*(ull)phi[m]%R);
}
return ;
}