第一级配置器是对C的内存分配函数malloc,free,realloc的简单封装,用来分配大于128bytes的区块。

第二级配置器管理16个free-lists链表,各自管理8-128bytes的小额区块。

链表节点结构如下:

union obj //free_list节点
{
union obj* free_list_link;
};

【C++】SGI-STL空间配置器-LMLPHP

当一个区块未被使用时,其前端sizeof(obj)的空间用于存放union obj,因此可通过free_list_link指针找到下一个区块。

当需要一个区块时,直接将该区块的首地址(即指向该区块的free_list_link)返回,使用过程中,该区块的前部union被覆盖,因此不会造成空间的浪费。

代码如下:

class alloc
{
private:
static size_t ROUND_UP(size_t bytes) //将bytes上调至8的倍数
{
return (((bytes)+__ALIGN - )&~(__ALIGN - ));
}
private:
union obj //free_list节点
{
union obj* free_list_link;
};
private:
static obj* volatile free_list[__NFREELISTS];
static size_t FREELIST_INDEX(size_t bytes)
{
return (((bytes)+__ALIGN - ) / __ALIGN - );
}
static void* refill(size_t n); //返回大小为n的对象,并可能加入大小为n的其他区块到free_list
static char* chunk_alloc(size_t size, int &nodejs); static char* start_free; //内存池起始
static char* end_free; //内存池结束
static size_t heap_size; //? public:
static void* allocate(size_t n);
static void deallocate(void* p, size_t n);
static void* reallocate(void* p, size_t old_sz, size_t new_sz); }; char* alloc::start_free = ;
char* alloc::end_free = ;
size_t alloc::heap_size = ;
alloc::obj* volatile alloc::free_list[__NFREELISTS] = { nullptr }; void* alloc::allocate(size_t n)
{
obj* volatile* my_free_list; // volatile修饰的是*my_free_list
obj* result;
if (n > static_cast<size_t>(__MAX_BYTES))
{
return malloc(n);
} my_free_list = free_list + FREELIST_INDEX(n);
result = *my_free_list;
if (result == nullptr) //没找到可用free_list
{
void* r = refill(ROUND_UP(n));
return r;
}
*my_free_list = result->free_list_link;
return result;
}
void alloc::deallocate(void* p, size_t n)
{
obj* q = (obj*)p;
obj* volatile* my_free_list; if (n > (size_t)__MAX_BYTES)
{
free(p);
return;
}
my_free_list = free_list + FREELIST_INDEX(n);
q->free_list_link = *my_free_list;
*my_free_list = q;
}
void* alloc::refill(size_t n)
{
int nobjs = ;
char* chunk = chunk_alloc(n, nobjs);
obj* volatile* my_free_list;
obj* result;
obj* current_obj, *next_obj;
if (nobjs == )return (chunk);
my_free_list = free_list + FREELIST_INDEX(n);
result = (obj*)chunk; //这一块返回给客端
*my_free_list = next_obj = next_obj = (obj*)(chunk + n); //chunk~chunk+n已经分配给客户端
//将free list的各节点串接起来 for (int i = ;; ++i)
{
current_obj = next_obj;
next_obj = (obj*)((char*)next_obj + n);
if (nobjs - == i)
{
current_obj->free_list_link = nullptr;
break;
}
else
{
current_obj->free_list_link = next_obj;
}
}
return result;
}
char* alloc::chunk_alloc(size_t size, int& nobjs) //尝试从内存池分配单个大小为size,数量为nobjs的区块
{
char* result;
size_t total_bytes = size*nobjs;
size_t bytes_left = end_free - start_free; if (bytes_left >= total_bytes) //内存剩余空间完全满足需求
{
result = start_free;
start_free += total_bytes;
return result;
}
else if (bytes_left>=size) //不能完全满足需求,但能供应>=1个区块
{
nobjs = bytes_left / size;
total_bytes = size*nobjs;
result = start_free;
start_free += total_bytes;
return result;
}
else
{
size_t bytes_to_get = * total_bytes + ROUND_UP(heap_size >> );
if (bytes_left > )
{
obj* volatile* my_free_list = free_list + FREELIST_INDEX(bytes_left);
((obj*)start_free)->free_list_link = *my_free_list;
*my_free_list = (obj*)start_free;
} start_free = (char*)malloc(bytes_to_get); //配置heap空间
if (start_free == nullptr) //heap空间不足
{
obj* volatile* my_free_list, *p;
for (int i = size; i <= __MAX_BYTES; i += __ALIGN) //寻找尚未使用的足够大(至少>=size)的区块,
{
my_free_list = free_list + FREELIST_INDEX(i); //寻找大小为i的区块所在地
p = *my_free_list;
if (p)
{
*my_free_list = p->free_list_link; //将该区块取出
start_free = (char*)p; //将其编入内存池
end_free = start_free + i;
return chunk_alloc(size, nobjs); //递归调用,修正nobjs
}
}
end_free = ; //彻底没内存
throw; //抛出异常
}
heap_size += bytes_to_get; //从堆里获取的空间
end_free = start_free + bytes_to_get;
return (chunk_alloc(size, nobjs));
}
}
05-11 20:53