3156: 防御准备
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 2207 Solved: 933
[Submit][Status][Discuss]
Description
Input
第一行为一个整数N表示战线的总长度。
第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai。
Output
共一个整数,表示最小的战线花费值。
Sample Input
10
2 3 1 5 4 5 6 3 1 2
Sample Output
18
HINT
1<=N<=10^6,1<=Ai<=10^9
练了几题,这类题目的模式还是很固定好写的
就不推了
设f[i]表示i位置放防御塔的最小代价
显然有f[i] = min{f[j] + (i - j) * (i - j - 1) / 2} + A[i] 【中间那一段就是中间木偶的代价】
去掉常数化简有2 * i * j + 2 * f[i] = (2 * f[j] + j^2 + j)
令y = 2 * f[j] + j^2 + j,x = j
就是y = 2i * x + 2 * f[i]
化为求截距最小,由于所有值都是单调递增,维护下凸包
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
LL n,q[maxn],head,tail;
LL A[maxn],f[maxn];
inline double slope(LL u,LL v){
double y1 = 2 * f[u] + u * u + u,y2 = 2 * f[v] + v * v + v;
return (y1 - y2) / (u - v);
}
inline LL getf(LL i,LL j){
return f[j] + (i - j) * (i - j - 1) / 2 + A[i];
}
int main()
{
n = read();
REP(i,n) A[i] = read();
head = tail = 0;
for (LL i = 1; i <= n; i++){
while (head < tail && slope(q[head],q[head + 1]) + eps < 2 * i) head++;
f[i] = getf(i,q[head]);
while (head < tail && slope(q[tail],q[tail - 1]) + eps > slope(i,q[tail])) tail--;
q[++tail] = i;
}
cout<<f[n]<<endl;
return 0;
}