题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119

题意:中文题诶~

思路:这题数据比较大直接暴力肯定是不行咯,通过一部分打表我们不难发现这个矩阵就是由两个杨辉三角构成的,那么求f(n, m)就是求组合数c(m+n-2, m-1)%mod,其中n>=m;

我们令m+n-2=n, m-1=m, 即我们要求c(n, m)=n!/((n-m)!*m!)%mod,为了书写方便,我们再令:a=n!/(n-m)!, b=m!;

那么我们现在要求的就是:(a/b)%mod,除法取模并不能直接计算,我们需要将之转化为乘法取摸运算;

接下来我们可以有两种解法:

解法1:(a/b)%mod=(a*b')%mod,其中b'为b%mod的乘法逆元,求乘法逆元我们直接用exgcd就好了;不过这里还有一个问题需要注意:

a, b两个数本身就已经超过long long了,所以我们不能先直接计算出a, b的值再求逆元;那么我们是否可以在计算a, b的过程中给其取摸呢?

即:((a%mod)/(b%mod))%mod=?((a%mod)*b')%mod,  答案是可以的, 因为:b=1(%mod), 那么有 b%mod=1(%mod),  显然,先给b取摸再求逆是可行的。 所以我们最终要求的就是:((a%mod)*b')%mod;

代码:

 #include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; void exgcd(ll a, ll b, ll&x, ll&y){
if(!b){
y=, x=;
return;
}
exgcd(b, a%b, y, x);
y-=a/b*x;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
exgcd(b, mod, x, y);
x=(x%mod+mod)%mod;
cout << a*x%mod << endl;
return ;
}

解法2:

我们先引入费马小定理:对于互质的两个数b, mod, 有:b^(mod-1)=1(%mod)-----1式;

本题要求 x=(a/b)%mod, 即: a/b=x(%mod)-----2式;

联立1,2式,有:a/b*b^(mod-1)=x(%mod), 即:a*b^(mod-2)=x(%mod), 所以:x=a*b^(mod-2) % mod, 我们可以用快速幂求解;

关于上式证明:

1式等价于:b^(mod-1)%mod=1; 即: b^(mod-1)=k*mod+1;

2式等价于:(a/b)%mod=x; 即: a/b=k'*mod+x;

所以有:a/b*b^(mod-1)=k*k'*mod^2+k'*mod+x*k*mod+x;

所以:a/b*b^(mod-1)%mod=x;

所以:a/b*b^(mod-1)=x(%mod), 即原式得证;

代码:

 #include <bits/stdc++.h>
#define ll long long
using namespace std; const ll mod=1e9+; ll get_pow(ll x, ll n){
ll ans=;
while(n){
if(n&){
ans=ans*x%mod;
}
x=x*x%mod;
n>>=;
}
return (ans+mod)%mod;
} int main(void){
ll n, m, a=, b=, x, y;
cin >> n >> m;
if(n<m){
swap(n, m);
}
n=n+m-, m-=;
for(ll i=n,j=; j<m; j++,i--){
a=i*a%mod;
}
for(ll i=; i<=m; i++){
b=b*i%mod;
}
cout << a*get_pow(b, mod-)%mod << endl;
return ;
}
04-21 04:47