题目链接
题解
最大化这个东西\(\sum_{i=1}^{k-1} | a_{x,i}-a_{y,i} | - | a_{x,k}-a_{y,k} |\)
去掉绝对值号,也就是就是求这个式子 \(\sum_{i=1}^{k-1}±(a_{x,i}-a_{y,i}) - | a_{x,k} - a_{y,k} |\) 的最大值
对与前面的 \(i\) 式取 正负号 一定会有一个方案使每个 \(a_{x,i}-a_{y,i}\) 不负
装压枚举每个\(i\)的符号,对于 \(a_{x,k}\) 从小到大排序,维护前缀最小值更新答案
代码
#include<cmath>
#include<cstdio>
#include<algorithm>
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9'){if(c == '-')f = - 1; c = getchar(); }
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = getchar();
return x * f;
}
#define INF 0x3f3f3f3f
int n,k;
struct A {
int d[10],id;
bool operator < (const A &a)const {
return d[k] < a.d[k];
}
} a[100007];
int c[76];
int main() {
n = read(),k = read() - 1;
for(int i = 0;i <= k;++ i) c[i] = read();
for(int i = 1;i <= n;++ i) {
a[i].id = i;
for(int j = 0;j <= k;++ j) a[i].d[j] = read(),a[i].d[j] *= c[j];
}
std::sort(a + 1,a + n + 1);
int ans = 0,id1,id2;
for(int s = 0;s < (1 << k); ++ s) {
int minn = INF, id;
for(int i = 1;i <= n;++ i) {
int ss = 0;
for(int j = 0;j < k;++ j)
if(s & (1 << j)) ss += a[i].d[j];
else ss -= a[i].d[j];
ss -= a[i].d[k ];
if(ans < ss - minn) ans = ss - minn,id1 = a[i].id,id2 = id;
if(minn > ss) minn = ss,id = a[i].id;
}
}
printf("%d\n",ans);
return 0;
}