栈遵循LIFO ( last in first out) 即后入先出原则

栈结构类似于叠盘子 后叠上去的要先拿走 才能拿到下面的盘子

因此stack是一种访问受限的线性存储结构

用单向链表的结构来存储

stack类

 class stack
{
stack();
bool empty() const;
void pop(); //移除栈顶元素
void push()(const T&item);//增加元素至栈顶
int size() const;
T &top() const;//返回栈顶元素
}

栈的两个常见应用:

&&Run-time Stack  运行时间栈

顺序执行活动,运行栈顶的活动,运行完毕弹出。

&&RPN or Postfix Notation

将中缀表达式转化为后缀表达式压入栈中,顺序弹出进行运算。

如:a*b+c  -> ab*c+

  a*(b+c)  -> abc+*

  a-(b-(c-d))  -> abcd---

压入栈中时分为 数字栈 和 符号栈

符号栈:进栈与栈顶元素比较优先级。

    同级则先弹出栈顶元素再新元素进栈,

    优先级低则先弹出栈顶元素再与新的栈顶元素比较,

    优先级高则直接入栈。

    ‘(’ 直接入栈,碰到 ‘)’ 则将直至 ‘(’ 的符号全部弹出。

举例:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgoAAAFJCAIAAAB1h5JdAAAbJElEQVR4nO3dP3biPhfGcZ+TDWQp1NkD28jJIlKwAArq2QD9FOmoaafNSUWZLjvwW/D+HGNfycKS7Efo+ynmZIwxV1d/rnAS0rQAAIw0awcAAFBEeQAAGCgPAAAD5QEAYKA8AAAMlAcAgIHyAAAwUB4AAAbKA2q32WwaVZvNZu30rINOUUB5QO2aRncWKMeWlXLDlWNLq5Z2Ai7Ks105tqyUG64cW1q1tBNwUZ7tyrFlpdxw5djSqqWdgIvybFeOLSvlhivHllYt7QRclGe7cmxZKTdcOba0amkn4KI825Vjy0q54cqxpVVLOwEX5dmuHFtWyg1Xji2tWtoJuCjPduXYslJuuHJsadXSTsBFebYrx5aVcsOVY0urlnYCLsqzXTm2rJQbrhxbWrW0E3BRnu3KsWWl3HDl2NKqpZ2Ai/JsV44tK+WGK8eWVi3tBFyUZ7tybFkpN1w5trRqaSfgojzblWPLSrnhyrGlVUs7ARfl2a4cW1bKDVeOLa1a2gm4KM925diyUm64cmxp1dJOwEV5tivHlpVyw5VjS6uWdgIuyrNdObaslBuuHFtatbQTcEky2/t/bDL+av3LJrxaQegUBbW0E3BhJRJEpyiopZ2ACyuRIDpFQS3tBFxYiQTRKQpqaSfgwkokiE5RUEs7AZd5s70JtnxsD4BOUVBLOwEXViJBdIqCWtoJuLASCaJTFNTSTsCFlUgQnaKglnYCLklm+4ylZ7fbhVw2Lq5S0SkKamkn4MJKJIhOUVBLOwGXJVei/urDSuRBpyiopZ2Ay2Ir0W63YyUKRKcoqKWdgMsyK9FuZLHYSkSnKKilnYCL8mxXji0r5YYrx5ZWLe0EXJRnu3JsWSk3XDm2tGppJ+CiPNuVY8tKueHKsaVVSzsBF+XZrhxbVsoNV44trVraCbgoz3bl2LJSbrhybGnV0s7SbTabRtVms1k7PVGenp7WTqHT09PT2ulZB52igPJQhkZ4w6IcWwjl+JVjy0q54cqxpVVLO0unPCKVYwuhHL9ybFkpN1w5trRqaWfplEekcmwhlONXji0r5YYrx5ZWLe0snfKIVI4thHL8yrFlpdxw5djSqqWdpVMekcqxhVCOXzm2rJQbrhxbWrW0s3TKI1I5thDK8SvHlpVyw5VjS6uWdpZOeUQqxxZCOX7l2LJSbrhybGnV0s7SKY9I5dhCKMevHFtWyg1Xji2tWtpZOuURqRxbCOX4lWPLSrnhyrGlVUs7S6c8IpVjC6Ecv3JsWSk3XDm2tGppZ+mUR6RybCGU41eOLSvlhivHllYt7Syd8ohUji2EcvzKsWWl3HDl2NKqpZ2lUx6RyrGFUI5fObaslBuuHFtatbSzdAlH5Ofn5/WDJ9/f35NcsPTZQm4F0SkKamln6RKOyLe3t+ts+ffvX5ILlj5byK0gOkVBLe0sXaoR+e/fv+5j65NcsC1/tpBbQXSKglraWbpUI7LbSf358yfJBdvyZwu5FUSnKKilnaVLMiIvl0u3k0r1Rrstf7aQW0F0ioJa2lm6JCPyeDwmf6Pdlj9byK0gOkVBLe0sXZIRud1u0/4Ix1Xps4XcCqJTFNTSztLFj8j+G+2/f/8mieqq9NlCbgXRKQpqaWfp4kfk6XTqZsv5fE4S1VXps4XcCqJTFNTSztLFj8g/f/50s+VyuSSJ6qr02UJuBdEpCmppZ+niR+R+v+9my/f3d5KorkqfLeRWEJ2ioJZ2li5+RDY9SULqXzntBRdGbgXRKQpqaWfpmC35kFtBdIqCWtpZuoVny263u+vKEXGtj9wKolMU1NLO0jFb8iG3gugUBbW0s3TxI7L7FSHXpfozpKrZQm4F0SkKamln6eJHpP8HOXa7XbWzhdwKolMU1NLO0sWPyP7nzwx+DHw3snBs6yK3gugUBbW0s3TKI1I5thDK8SvHlpVyw5VjS6uWdpZOeUQqxxZCOX7l2LJSbrhybGnV0s7SKY9I5dhCKMevHFtWyg1Xji2tWtpZOuURqRxbCOX4lWPLSrnhyrGlVUs7S6c8IpVjC6Ecv3JsWSk3XDm2tNK3c7PZNKo2m03y9i7j6elp7eQ5PT09rZ2eKORWEJ2iIH15aIRLq3JsfsqRK8cWQjl+5diyUm64cmxpUR7KoBy5cmwhlONXji0r5YYrx5YW5aEMypErxxZCOX7l2LJSbrhybGlRHsqgHLlybCGU41eOLSvlhivHlhbloQzKkSvHFkI5fuXYslJuuHJsaVEeyqAcuXJsIZTjV44tK+WGK8eWFuWhDMqRK8cWQjl+5diyUm64cmxpUR7KoBy5cmwhlONXji0r5YYrx5YW5aEMypErxxZCOX7l2LJSbrhybGlRHsqgHLlybCGU41eOLSvlhivHlhbloQzKkSvHFkI5fuXYslJuuHJsaVEeyqAcuXJsIZTjV44tK+WGK8eWFuWhDMqRK8cWQjl+5diyUm64cmxpSZeHn5+fwR+JjVRuv5LVfFLF332iZ5KrdddMeLWC0CkKdMvD5XK59uvpdEpywbbkfiWr+aRdibbbbZKrdddMeLWC0CkKFMvD9/d3d6mmaf79+9e27c/Pz8/Pz+qxrYWs5hMT/+l0Oh6P1xzu9/umafb7fdu2l8vleDzG1+DSczsbnaJArjz8/fu329u+vb01TXO5XC6Xy3a7fXt7Wze2FZHVfGLiv64+TdMcj8f39/emad7e3q4Z7laltWIrGp2iQK48dPcK//z5c+3a8/ncHbzuedeKbUVkNZ+Y+LfbbeMWf0+j9NzORqcokCsP39/fx+Nx3MH7/T5yFYuPbUVkNZ+Y+K/f5z+dTteie/X+/n46nT4/P7lxNxudokCuPFxdLpfuzWCT7vuo5fYrWc0nPv7v7+9+6d1ut913elaPrVB0igK58nA+n/s1v9+7f//+jaz85fYrWc0n/p3ZdRnabrfXb+ckXIxKz+1sdIoCufLQFfzT6XT9FtPn52d3sNq75GQ1n8j4u2+EXt+Ndd/Uif8WaHxs5aJTFMiVh/P5vN1uPz8/2/8Wtcvl8vPz8/7+/v7+vm5sKyKr+cTHfz6f++vOfr8/n8+R17wqPbez0SkK5MrD4FLxe9vBBVNdamFkNR/l+JVjy0q54cqxpaVbHrq7h6lqfltyv5LVfJTjV44tK+WGK8eWlm55yEE5Nj/lyJVjC6Ecv3JsWSk3XDm2tB6kPOx2u5DTyu1XsprPwvEHZvWq9NzORqcooDyUgazmw0okiE5RUHB56Pfowy9kZDWfBeKfkdWr0nM7G52ioNTysNvtqlrIyGo+ueOfl9Wr0nM7G52ioMjysBsJfGK5/UpW88ka/+ysXpWe29noFAVFlofZlGPzU45cObYQyvErx5aVcsOVY0uL8lAG5ciVYwuhHL9ybFkpN1w5trQoD2VQjlw5thDK8SvHlpVyw5VjS4vyUAblyJVjC6Ecv3JsWSk3XDm2tCgPZVCOXDm2EMrxK8eWlXLDlWNLK307n5+fG1XPz8/J27sMspoPuRVEpyiopQwCAO5CeQAAGCgPAAAD5QEAYKA8AAAMlAcAgIHyAAAwUB4AAAbKAwDAQHkAABgoDwAAA+UBAGCgPAAADJQHAICB8gAAMFAeAACGlctDE/B3l8bnXI+EPLdypHd55BwPI9lw/Dq8vBy+uv9+vDb9/16PDA9dI5iaEq65FPLcx3OT516WSW9ygyE9Rs7x2BKNxa/DS/P60bbtf0vW1+Hl9eNmguWYS9Xp5XnwH9Kb2E12beQcjy3JoPw6vDS9qfR1ePnvr7KaG91xEI65MfgTr+bxFPGX4jbPw+pAehMaDGkTOceDW6g8+N+n+6eEOYsmY9rtdiGhF+Umz1+HF9KbjVEeBtWAnGdSSTOLkH6r4rq55Ixg6pty896JP/wg+3id3N62LelNx/dm4RY5j1FJM4uQ651sqrlk7q26pwwe6g+sRx9k/TcPPqQ3FYZ0PpU0szhCP9hqTqdutgzmz/jk3W5X0yBzfVv0BumN17tV+ivwthI5D1FJM0skXR5cu7DuSPfFbiRXxCoSlAfSe5fAdw/k/C6VNLNQa5YHzyQJOW1wvLKxNX1zifSmFVIeyPkMlTSzREWWh9babbWVvS2d/NY06U0ra3lo6855Jc0szmrlwZwh5nH/Vst1nYfnf/tAepdHzvFg1hmI/gkweHRwM9fz37q4f62X9C6PnOPxrDAQQ0b//8/pb6b6z3J9XRe7PpDe5ZFzPCT5gdifSP5/KxT+o/gupHd55ByFKGEUssnKivQuj5yjBAxHAICB8gAAMFAeAACGvOXB/DCZGT+3d9dTKvy5QPK8GFK9GFK9umS5aCyuMwdPaR1DwXxWSCR3xl4S8rwYUr0YUq0pZXmYd1r/yLjv/QJPTtE+FeR5MaR6MaQ6wsdryB9+mWXR8tDvEs+/867mimROB3+8DoZI5G8XJESeF1NNqm8/s3yNPiDVt080+sD6E83Xv2l4OLweDiEf4Hy/vDeX+gbndM/qX8H82vOK5skJOviG83fPVvkcMfK8mGpS7f54lp6svUCq2/bjtfe3gUdT4ffR4Uf5f7w23g/njOm4pW8utaOOGf/bP9M1VkJOc51/F88n361VHu49kzzPU02qJcrDvWc+cKonzvqtOEHvHkoqD4Pe9Ryc/SohFwnu9eHHZq/+Z63I82IqSfXgjscqvUCqh89z3ika76OM7z2k6rjE5cFfgSNLsfn0yeI/7s47Ovi2nxT+6iF5XkwNqTYe/W+tWbIXKk/1Lcd7h+47E1PvPhJ2XPry4HqoHd09dH3tuX7I8ZAjYW4KtchfPSTPi3n4VFv+v2gt3As1pzro6OC67jPSdtyi5WHyieZQ8DAvnqyDR1Vc4a8ekufF1JDqkd/VacleqDzVN4emfwBp4oOaE3ZcmvLQ7xjPo+Zxs4PvukjgUBg8ZbJRZhlfd9kiz4upJ9Xt1+G1/5OSt3f5Jq8Zj1T/PsW17Pe/vzD5/iJdx61QHvr57T/kT7p/lNx1JKiDJ98aroE8L6amVPe/X5rrF6w8SPXwkYmHl5svCcrDoJM85XeQ2SZF/Y85syzkeTGkejGkWlniXJjJnTzo+ro7MhgZM2J4MOR5MaR6MaRaDbkAABgoDwAAA+UBAGCgPAAADJQHAICB8gAAMFAeAAAGygMAwEB5AAAYKA8AAAPlAQBgoDwAAAyUBwCAgfIAADBQHgAABsoDAMBAeQAAGCgPAAAD5QEAYKA8AAAMlAcAgIHyAAAwUB4AAAbKAwDAQHkAABgoDwAAA+UBAGCgPAAADJQHAICB8gAAMFAeAAAGygMAwEB5AAAYKA8AAAPlAQBgoDwAAAyUBwCAgfIAADBQHgAABsoDAMBAeQAAGCgPAAAD5QEAYKA8AAAMlAcAgIHyAAAwUB4AAAbKAwDAQHkAABgoDwAAA+UBAGCgPAAADJQHAICB8gAAMFAeAAAGygMAwEB5AAAYKA8AAAPlAQBgoDwAAAyUBwCAgfIAADBQHgAABsoDYm02m0bVZrNZOz1VY2wUjfKAWE2jO4qUY6uBcv6VYxNBghBLeZopx1YD5fwrxyaCBCGW8jRTjq0GyvlXjk1E+gRxt7E2jfA0U46tBsr5V45NRPoEKSddObZyKWdVObYaKOdfOTYRlAfEUs6qcmw1UM6/cmwiKA+IpZxV5dhqoJx/5dhEUB4QSzmryrHVQDn/yrGJoDwglnJWlWOrgXL+lWMTQXlALOWsKsdWA+X8K8cmgvKAWMpZVY6tBsr5V45NBOUBsZSzqhxbDZTzrxybCMoDYilnVTm2GijnXzk2EZQHxFLOqnJsNVDOv3JsIigPiKWcVeXYaqCcf+XYRFAeEEs5q8qx1UA5/8qxiaA8IJZyVpVjq4Fy/pVjE6FbHrqPWU1yte6aCa+GK+WsKsdWA+X8K8cmQr08bLfbJFfrrpnwarhSzqpybDVQzr9ybCK0ysPpdDoejz8/P23b7vf7pmn2+33btpfL5Xg8nk6nFWODi3JWlWOrgXL+lWMToVUeriWhaZrj8fj+/t40zdvb29vb2/XgtVSsFRtclLOqHFsNlPOvHJsIrfKw3W4bt/gbTQyIHJSzqhxbDZTzrxybCK3y8PPzc7lcTqfT9a3D1fv7++l0+vz8vN50Wis2uChnVTm2GijnXzk2EVrl4er7+7v/NmK73X5/f4vEhjHlrCrHVgPl/CvHJkKuPHS1YbvdXi6X7uskFYIBkUN8Vj13FFePDTGU868cmwi58tB9d/r6c0rn8znV96XjY4OJ8gAX5fwrxyZCrjy0bXs+n/vFYL/fn8/nyGteMSByWLg87Ha7JWNDjNz5v2swDDA2JimWh3yUYysX5QEulIeiUR4Qa4Gs9lcBykNBcuR/9mAYYGxMojwg1gI7RMpDoZLnP2YwDDA2JhVfHlgsVpc1q7uRu55Oj68rbf4jB8MAY2MS5QGxlLOqHFsNlPOvHJuIIssDtxqkKGdVObYaKOdfOTYR5ZUH7kSrUc6qcmw1UM6/cmwiCisP3IkWpJxV5dhqoJx/5dhEFFYeIinHVi7lrCrHVgPl/CvHJoLygFjPz8+e32tb1/Pz89rpqRpjo2iUBwCAgfIAADBQHgAAhvTLJXcbAeABsJsGABgoDwAAA+UBAGCgPAAADJQHAICB8gAAMFAeAAAGygMAwEB5AAAYKA8AVDQBH3szPud6JOS5uAsJBaAipjwEPh3hyCbWpLlbDL8yO9lIg0T5/+s6SLYzIa1Yk+xuMfDK7GRdvg4vL4ev8fGP16bpPZCwPHSfvDk/aNwilVhUQbvFyNJVta/DS/P6YT0yuzyMP4B5cDBtC9AqlweF/ta89SFlsEn8eG0Ge0aF3WLgTnbydXPE9oi+Di+NuzrcZLyg7UKFkqXVX+cnHx3PJYUuj9w/KjQhr94m8Trvvw4vrx83y/H6u8XgneyA5yWSxfaYnOVhXKc9q4GZSdfBNiD/u91ufpuqlHIcj5fFyYXSPwMTxhYofPHyHKxmdRisAl+Hl/9m5+8asPpu8Y6d7PglJl+o4t7PYnI8DArAXSWZ8nCvXOVhchfQTq0Fg0f/23d8vN5Odv8G0HVXwfX0hItXBRvJ6fKw7m7RCvLmAc/YCCkPMbGxVJkmE95aXeP6ur3NMzm/V5bFa7zEu2aR5+ubp/TuDwxuFfjKg/uuguvp4eXBXNfCFqzH5Lq55DdZgAf5XCzD4eVhXmwsVabw8mA+a1wbKA8xcpUHc/XsnzB+iuuL4QbwZtH33B/w3FXorH7r49H47tdYku8Wkwi5PjvZEL13lMZcDJk73pXh5jSzNvTNbUS9Ekwtz6bJ05GuEjJdHnr3l7y7VKM8DBYvvlG2uvDyYD4rUyW+tzyExMZOduyu8uA50jq6jKoQKf33HsLX1tbq1JCZf+8WdfYTBzG4ykM/Zn9J6Ktw4N41+f0jITDJff6dbGSQ/tjYyZpSlQfP0kGqY2QpD4Mj4689BwPLw9RdI+cT1731Ufn+MfduMYnAADwPsZMNlGQ8eLaYiLREefD02bzy8HV4uWuZ728bOyEXCC8P5rPMLWT/v4HxP4zcu0X/j7HNi/De4+xkw41npWn8rP7TzWsuEX0FspeHrrfM4+NBkKM8dPzvHu5aqvxxjscotxfa/LvFyPLgGXKB5cETG+b5TWB/xvWzOvqanKeSqzyMV3zXMuo64unjTDeXUu1tW2uZaLm9kH23OPt7UjevctcJwbEhhWsyw/9FnLzvHsaPhhycesj+kaSQlWGZ8jDIQ/+EystDiNm7xfBftvC96NRpze3qw052ad5sG18jwkLlwbWN8mwb3fPKePMQf9PZfMUZR7i9kJLyblE5NiCFZAM3fCn030mYvpTxu9BRdxVcgaW+9YFZlHeLyrEB0dKM3cGWeXJtnVwxPSeMq0PMXYV7/QbG7QUAD624lWv2t6Uz4PYC4HDnHWPfdTKdjElkMw63F1C9kHuw3ZmDp7SOQmI+KySSO2OHD9lEFDaJCOwOz/ftWqtyBN6mDjlN2Mdr6N2Q8DOT0U8fVLBJhCmkO/pDwvPvvKu5IpkzTj5eByO8933N249fMP5qrvnA4Jndo9cf0D8cXg+HiR+8dJzpfcUkmGYIFTjZxqc1bBK1N4mRQnrH7NP+FcyvPa9onuz/7/3GH/Hs6puP196fwBot17+PDn8E/+O1Cfxm6vBM/ysaZvzSVd55Zc7eGX1211NKWCyKNGPeuv6ddzVXJHN6vKBNorzw/E8Oj/6ZrkoTcprr/LuMlt2Avy82edZvxfF092CLMDUwwuJaszyE901/iHSnTXbnjCGItEKm4rj3+93h+trziubJ/v/eT3mTOCT4i/eB+fcPicmL3DVgPCcEj5bxD0ne7BucfeT7LazxqDHfLIYfnHjFyM8ATVke5p3mGishAk9O0b6syrifEJ7JwZwf/9s/M6TLsnZxMZvEtm2Fy8PkJI1/ifHBEOOnBL2k/3dtnT9g7xgW3ZvO0D1C+ILgHIjxHxG9aHloplaNuwaT62T/f4Mo3nlYX2AmzX4J79m7ut5zQnC/F7BJFP8c+MYq/P2H2tHbStfXnuuHHA85Embyfr5dHyZ/Lcv/J47Hf3pgcknov+Lv018OST4iOu/NJdeY8K8g7erl4YbSnYee5ZeJcSf6O3T2S4wPhhg/Jegl5TeJ+n8mpAkoD5NPbKxC4u/u8cVDjgSZfgM5+5PfQj4BKPTdg/8V4z8ieumbS+1oWTeHSHfC5ELgOc11/l1k7jwMrVgeXA+1bBL7102xSdT/MyGD6ex61DzumfuBFwkxfspko+z+/Tq89t/1j94eOnuxP5WDPvYhqDyEVKPCyoM5mPwj7N5XCblI8Gqidedh3V1kSHmYfKJZSPxzO2N5KGGTqFkVOneVh/7UM1cA/0tMHp88EjT3nXsG918rHxV898Mhd5ADBsbEK6aRuDx4Jnk7ew7fvsT4YOAqM3hK0Esq3XlY9ybDXavA4Pj4X/9LjI9n6uIiNomt5A2lq+Z2iffP/WZUDyIHRsyZCJG+PLgearnz0L/unXceVr/JcFd5GKwLrtP8F/EcnzwSVB6K2CSWI2RgjA/6h8fkshDycpht0fIw+USzkHiYF09WHsTuPKx4k2Ewh1190Y7W5XHnevqCVQCQkmaa9VcHz6Pm8ci1I7yQDJ4y2SjBOw8KNxnCu3hcJ1wnm910bwwA0lqhPAw2m67T/BfxHJ88ErQScecBQN0SlIfBEu/ZvA/W5fH7Bs+qzdYSAJaUeCXlzgMAPAZWUgCAgfIAADBQHgAABsoDAMDwP42mmxaQgsm/AAAAAElFTkSuQmCC" alt="" />

04-21 01:30