题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个
分析:
我们先分析Tire 图的结构 : Trie图是在AC自动机的原型上增添边使得状态可以快速转移,标记危险的节点(后缀是不良单词的节点); 那我们是想构造长度是n不包含不良串对不对 , 那是不是在trie图上从0节点走n步到安全节点的方案数(Trie图也是状态转移图)
在一个有向图中,A走k步到B的方案数(这显然是经典的矩阵快速幂问题),(原理需要自己搜索)先对原图建立一个邻接表M[i][j] , M[i][j] =1表示i到j有边直接相连,然后ans=pow(M,k) ,ans[A][B] 为答案
#include<queue>
#include<stdio.h>
#include<string.h>
using namespace std; const int Max_Tot = 1e2 + ;
const int Letter = ;
const int MOD = 1e5;
int maxn;
int mp[]; struct mat{ int m[][]; }unit, M; mat operator * (mat a, mat b)
{
mat ret;
long long x;
for(int i=; i<maxn; i++){
for(int j=; j<maxn; j++){
x = ;
for(int k=; k<maxn; k++){
x += (long long)a.m[i][k]*b.m[k][j];
}
ret.m[i][j] = x % MOD;
}
}
return ret;
} inline void init_unit() { for(int i=; i<maxn; i++) unit.m[i][i] = ; } mat pow_mat(mat a, int n)
{
mat ret = unit;
while(n){
if(n&) ret = ret * a;
a = a*a;
n >>= ;
}
return ret;
} struct Aho{
struct StateTable{
int Next[Letter];
int fail, flag;
}Node[Max_Tot];
int Size;
queue<int> que; inline void init(){
while(!que.empty()) que.pop();
memset(Node[].Next, , sizeof(Node[].Next));
Node[].fail = Node[].flag = ;
Size = ;
} inline void insert(char *s){
int now = ;
for(int i=; s[i]; i++){
int idx = mp[s[i]];
if(!Node[now].Next[idx]){
memset(Node[Size].Next, , sizeof(Node[Size].Next));
Node[Size].fail = Node[Size].flag = ;
Node[now].Next[idx] = Size++;
}
now = Node[now].Next[idx];
}
Node[now].flag = ;
} //1) 如果son[i]不存在,将它指向 当前结点now的fail指针指
//向结点的i号后继(保证一定已经计算出来)。 //2) 如果son[i]存在,将它的fail指针指向 当前结点now的fail
//指针指向结点的i号后继(保证一定已经计算出来)。
inline void BuildFail(){
Node[].fail = ;
for(int i=; i<Letter; i++){
if(Node[].Next[i]){
Node[Node[].Next[i]].fail = ;
que.push(Node[].Next[i]);
}else Node[].Next[i] = ;///必定指向根节点
}
while(!que.empty()){
int top = que.front(); que.pop();
if(Node[Node[top].fail].flag) Node[top].flag = ;
for(int i=; i<Letter; i++){
int &v = Node[top].Next[i];
if(v){
que.push(v);
Node[v].fail = Node[Node[top].fail].Next[i];
}else v = Node[Node[top].fail].Next[i];
}
}
} inline void BuildMatrix(){
for(int i=; i<Size; i++)
for(int j=; j<Size; j++)
M.m[i][j] = ;
for(int i=; i<Size; i++){
for(int j=; j<Letter; j++){
if(!Node[i].flag && !Node[ Node[i].Next[j] ].flag)
M.m[i][Node[i].Next[j]]++;
}
}
maxn = Size;
} }ac; char S[];
int main(void)
{
mp['A']=,
mp['T']=,
mp['G']=,
mp['C']=;
int n, m;
while(~scanf("%d %d", &m, &n)){
ac.init();
for(int i=; i<m; i++){
scanf("%s", S);
ac.insert(S);
}
ac.BuildFail();
ac.BuildMatrix();
// for(int i=0; i<10; i++){
// for(int j=0; j<10; j++){
// printf("%d ", M.m[i][j]);
// }puts("");
// }puts(""); init_unit();
M = pow_mat(M, n); // for(int i=0; i<10; i++){
// for(int j=0; j<10; j++){
// printf("%d ", M.m[i][j]);
// }puts("");
// }puts(""); int ans = ;
for(int i=; i<ac.Size; i++)
ans += M.m[][i];
ans %= MOD;
printf("%d\n", ans);
}
return ;
}