了解AVL树之前要先了解二叉查找树(BST),BST查找元素的时间复杂度平均是O(logN),最坏的情况是O(N),所有的元素都接在左子树(或者右子树)就相当于一串链表了。而AVL树会对子树过高的情况进行优化,这里有个平衡因子的概念,当前节点的平衡因子=左子树高度-右子树高度,AVL树的每一个节点的平衡因子的绝对值都是 < 2 的。

当一个新节点插入AVL树 ( 根节点为tree ) 的时候会有四种情况:

假设距离新节点最近的失衡节点为 t ( 的平衡因子的绝对值达到了2,且距离新节点最近)

1、LL型:新节点在 t1 的左孩子的左子树上,需要对 t 进行一次右旋操作;

AVL树(自平衡二叉查找树)-LMLPHP

2、RR型:新节点在 t 的右孩子的右子树上,需要对 t 进行一次左旋操作;

AVL树(自平衡二叉查找树)-LMLPHP

3、LR型:新节点在 t 的左孩子的右子树上,需要先对 t 的左孩子进行一次RR(左旋)操作,然后对 t 进行一次LL(右旋)操作;

AVL树(自平衡二叉查找树)-LMLPHP

4、RL型:新节点在 t 的右孩子的左子树上,需要先对 t 的右孩子进行一次LL(右旋)操作,然后对 t 进行一次RR(左旋)操作;

AVL树(自平衡二叉查找树)-LMLPHP

AVL树的实现代码如下:

 #include "pch.h"
#include <iostream>
#include <queue>
#define ElementType int//自定义元素类型
using namespace std;
typedef struct node *AVLTree;
struct node {
ElementType key;
int Height = ;
AVLTree left = NULL, right = NULL;
};
int Height(AVLTree tree);//求树的高度
ElementType Max(ElementType a, ElementType b);
AVLTree insert(AVLTree tree, ElementType &key);//在AVLTree中插入节点
AVLTree LL_Rotation(AVLTree tree);//LL旋转
AVLTree RR_Rotation(AVLTree tree);//RR旋转
AVLTree LR_Rotation(AVLTree tree);//LR旋转
AVLTree RL_Rotation(AVLTree tree);//RL旋转 void levelTraversal(AVLTree tree);//层序遍历,用于测试 /*用main函数来测试,给N个不同的数据,插入AVL树中,然后层序输出*/
int main()
{
int N;
ElementType key;
AVLTree tree = NULL;
scanf("%d", &N);
for (int i = ; i < N; i++) {
cin >> key;
tree = insert(tree, key);
}
levelTraversal(tree);
} AVLTree insert(AVLTree tree, ElementType &key) {
if (tree == NULL) {
tree = new node();
tree->key = key;
}
else if (key < tree->key) {
tree->left = insert(tree->left, key);//key小于当前节点的值时继续往其左子树递归地插入
if (Height(tree->left) - Height(tree->right) >= ) {//左子树与右子树的高度差达到2的时候就要对当前节点进行旋转,这里由于是递归地执行,保证了平衡因子达到2的节点是最接近插入点的
if (key < tree->left->key)
tree = LL_Rotation(tree);
else
tree = LR_Rotation(tree);
}
}
else {
tree->right = insert(tree->right, key);
if (Height(tree->right) - Height(tree->left) >= ) {
if (key > tree->right->key)
tree = RR_Rotation(tree);
else
tree = RL_Rotation(tree);
}
}
tree->Height = Max(Height(tree->left), Height(tree->right)) + ;//当前节点的高度为其最大子树的高度+1
return tree;
} AVLTree LR_Rotation(AVLTree tree) {
tree->left = RR_Rotation(tree->left);
return LL_Rotation(tree);
} AVLTree RL_Rotation(AVLTree tree) {
tree->right = LL_Rotation(tree->right);
return RR_Rotation(tree);
} AVLTree RR_Rotation(AVLTree tree) {
AVLTree tree2 = tree->right;
tree->right = tree2->left;
tree2->left = tree;
tree->Height = Max(Height(tree->left), Height(tree->right)) + ;
tree2->Height = Max(Height(tree2->right), tree->Height) + ;
return tree2;
} AVLTree LL_Rotation(AVLTree tree) {
AVLTree tree2 = tree->left;
tree->left = tree2->right;
tree2->right = tree;
tree->Height = Max(Height(tree->left), Height(tree->right)) + ;
tree2->Height = Max(Height(tree->left), tree->Height) + ;
return tree2;
} int Height(AVLTree tree) {
if (tree == NULL)
return ;
return tree->Height;
} ElementType Max(ElementType a, ElementType b) {
return a > b ? a : b;
} void levelTraversal(AVLTree tree)
{
queue <AVLTree> Q;
Q.push(tree);
while (!Q.empty()) {
AVLTree t = Q.front();
Q.pop();
cout << t->key << " ";
if (t->left != NULL)
Q.push(t->left);
if (t->right != NULL)
Q.push(t->right);
}
}
05-11 17:42