11年北京现场赛的题目。概率DP。
公式化简起来比较困难。。。。而且就算结果做出来了,没有考虑特殊情况照样会WA到死的。。。。
去参加区域赛一定要考虑到各种情况。
 
像概率dp,公式推出来就很容易写出来了。
 /*
HDU 4098
题意:有n个人排队等着在官网上激活游戏。Tomato排在第m个。
对于队列中的第一个人。有一下情况:
1、激活失败,留在队列中等待下一次激活(概率为p1)
2、失去连接,出队列,然后排在队列的最后(概率为p2)
3、激活成功,离开队列(概率为p3)
4、服务器瘫痪,服务器停止激活,所有人都无法激活了。
求服务器瘫痪时Tomato在队列中的位置<=k的概率 解析:
概率DP;
设dp[i][j]表示i个人排队,Tomato排在第j个位置,达到目标状态的概率(j<=i)
dp[n][m]就是所求
j==1: dp[i][1]=p1*dp[i][1]+p2*dp[i][i]+p4;
2<=j<=k: dp[i][j]=p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1]+p4;
k<j<=i: dp[i][j]=p1*dp[i][j]+p2*dp[i][j-1]+p3*dp[i-1][j-1];
化简:
j==1: dp[i][1]=p*dp[i][i]+p41;
2<=j<=k: dp[i][j]=p*dp[i][j-1]+p31*dp[i-1][j-1]+p41;
k<j<=i: dp[i][j]=p*dp[i][j-1]+p31*dp[i-1][j-1]; 其中:
p=p2/(1-p1);
p31=p3/(1-p1)
p41=p4/(1-p1) 可以循环i=1->n 递推求解dp[i].在求解dp[i]的时候dp[i-1]就相当于常数了。
在求解dp[i][1~i]时等到下列i个方程
j==1: dp[i][1]=p*dp[i][i]+c[1];
2<=j<=k:dp[i][j]=p*dp[i][j-1]+c[j];
k<j=i: dp[i][j]=p*dp[i][j]+c[j];
其中c[j]都是常数了。上述方程可以解出dp[i]了。
首先是迭代得到 dp[i][i].然后再代入就可以得到所有的dp[i]了。 注意特判一种情况。就是p4<eps时候,就不会崩溃了,应该直接输出0
*/
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std; const int MAXN=;
const double eps=1e-;
double c[MAXN];
double pp[MAXN];
double dp[MAXN][MAXN];
int main()
{
int n,m,k;
double p1,p2,p3,p4;
while(scanf("%d%d%d%lf%lf%lf%lf",&n,&m,&k,&p1,&p2,&p3,&p4)!=EOF)
{
if(p4<eps)
{
printf("0.00000\n");
continue;
}
double p=p2/(-p1);
double p41=p4/(-p1);
double p31=p3/(-p1);
pp[]=1.0;//pp[i]=p^1;
for(int i=;i<=n;i++) pp[i]=p*pp[i-]; dp[][]=p41/(-p);
c[]=p41;
for(int i=;i<=n;i++)
{
for(int j=;j<=k;j++)c[j]=p31*dp[i-][j-]+p41;
for(int j=k+;j<=i;j++) c[j]=p31*dp[i-][j-];
double tmp=c[]*pp[i-];
for(int j=;j<=k;j++)tmp+=c[j]*pp[i-j];
for(int j=k+;j<=i;j++)tmp+=c[j]*pp[i-j];
dp[i][i]=tmp/(-pp[i]);
dp[i][]=p*dp[i][i]+c[];
for(int j=;j<i;j++)dp[i][j]=p*dp[i][j-]+c[j];
}
printf("%.5lf\n",dp[n][m]);
}
return ;
}
04-20 18:20