Currency Exchange POJ - 1860
题意:
有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费。你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你手中的货币折合成s后是有增加的。
思路:
这道题在建立每种货币的兑换关系后,找到图中的正环即可,因为你沿着正环跑就可以增加价值。这里可以用类似Bellman_Ford判断负环的方法。
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000") //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull; typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = 1e9+;
const double esp = 1e-;
const double PI=acos(-1.0); template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
} /*-----------------------showtime----------------------*/
const int maxn = ;
struct edge
{
int u,v;
double c,r;
}e[maxn];
int n,m,s,tot = ;
bool flag;
double val,dis[maxn];
void add(int u,int v,double c,double r){
e[++tot].u = u;
e[tot].v = v;
e[tot].c = c;
e[tot].r = r;
}
double get(int i){
return 1.0*(dis[e[i].u] - e[i].c) * e[i].r;
}
bool bellman_ford(){
for(int i=; i<=n; i++)dis[i] = 0.0;
dis[s] = val; for(int i=; i<n; i++){
flag = true;
for(int j=; j<=tot; j++){
if(dis[e[j].v] < get(j))
{
dis[e[j].v] = get(j);
flag = false;
}
}
if(dis[s] > val)return true;
if(flag) break;
}
for(int i=; i<=tot; i++){
if(dis[e[i].v] < get(i)){
return true;
}
}
return false;
}
int main(){
scanf("%d%d%d%lf", &n, &m, &s, &val);
int u,v;double c1,r1,c2,r2;
for(int i=; i<=m; i++){ scanf("%d%d%lf%lf%lf%lf",&u,&v,&r1,&c1,&r2,&c2);
add(u,v,c1,r1);
add(v,u,c2,r2);
}
if(bellman_ford())puts("YES");
else puts("NO");
return ;
}
POJ - 1860