竞赛图:图中的任意两点间有且仅有一条有向弧连接

求竞赛图中的哈密顿路的算法:

首先,由数学归纳法可证竞赛图在n>=2时必存在哈密顿路;

(1)n=2时显然;

(2)假设n=k时,结论成立,哈密顿路为V1,V2,...,Vi,...,Vk;

现添加第k+1个结点,若存在弧<Vi,Vk+1>和弧<Vk+1,Vi+1>,则可得哈密顿回路V1,V2,...,Vi,Vk+1,Vi+1,...,Vk;

若不存在上述的vi,考虑到Vk+1与v1~vk的连通状况,则只有下面种原哈密顿路的情况:

1.所有的Vi(1<i<k)与Vk+1的弧的方向都是<Vi,Vk+1>,那么可得哈密顿回路V1,V2,...,Vi,...,Vk,Vk+1;

2.所有的Vi(1<i<k)与Vk+1的弧的方向都是<Vk+1,Vi>,那么可得哈密顿回路Vk+1,V1,V2,...,Vi,...,Vk;

3.存在一个中间结点m,使得所有的Vi(1<=i<=m)与Vk+1的弧方向为<Vk+1,Vi>,所有的

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <stack>
#include <queue>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <climits>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define PI 3.1415926535897932626
using namespace std;
int gcd(int a, int b) {return a % b == ? b : gcd(b, a % b);}
#define MAXN 1010
int next[MAXN],head;
string res;
int pick[MAXN][MAXN];
int N;
int main()
{
while (cin >> N)
{
memset(next,,sizeof(next));
getline(cin,res);
for (int i = ; i <= N; i++)
{
getline(cin,res);
for (int j = ; j <= N; j++)
pick[i][j] = res[(j -) * ] - '';
}
head = ;
int tmp;
for (int k = ; k <= N; k++)
{
bool found =false;
for (int i = head; i ; i = next[i])
{
if (pick[k][i])
{
if (i == head) head = k;
else next[tmp] = k;
next[k] = i;
found = true;
break;
}
else tmp = i;
}
if (!found) next[tmp] = k;
}
cout << "" << endl << N << endl;
for (int i = head; i ; i = next[i])
{
if (i == head) cout << i;
else cout << ' ' << i;
}
cout << endl;
}
return ;
}

Vj(m<j<=k)与Vk+1的弧的方向为<Vj,Vk+1>,这时依然可以构造哈密顿路 V1,V2,...,Vi,...,Vk,Vk+1;

05-26 05:44