定义

二分搜索树是二叉树(不包含重复元素)。

二分搜索树的每个节点的值,大于左子树的所有节点的值,小于其右子树的所有节点的值。

每一棵子树也是二分搜索树。

Java的二分搜索树-LMLPHP

二叉树搜索树必须要有比较,继承Comparable类

插入元素

package com.dsideal;

public class BST<E extends Comparable<E>> {

    private class Node
{
private E e;
//左右孩子
private Node left,right; public Node(E e)
{
this.e = e;
left = null;
right = null;
} }
//根节点
private Node root;
//二叉树元素个数
private int size; private BST()
{
root = null;
size = 0;
} //二叉树有几个节点
public int size()
{
return size;
} //二叉树是否为空
public boolean isEmpty()
{
return size == 0;
} public void add(E e)
{
root = add(root,e);
} //向根添加元素
private Node add(Node node,E e)
{
if(node == null)
{
size ++;
return new Node(e);
} if (e.compareTo(node.e) < 0)
{
node.left = add(node.left,e);
}else if(e.compareTo(node.e) > 0)
{
node.right = add(node.right,e);
} return node;
} }

二分搜索树的前序遍历,访问该节点是在左右子树之前。

private void preOrder(Node node)
{
if (node == null)
{
return;
}
System.out.println(node.e);
preOrder(node.left);
preOrder(node.right);
}

二分搜索树的中序遍历,结果是排序的。

 //二分搜索树的中序排序
public void inOrder()
{
inOrder(root);
} private void inOrder(Node node)
{
if (node == null)
{
return;
}
inOrder(node.left);
System.out.println(node.e);
inOrder(node.right);
}

二分搜索树的后序遍历

    //二分搜索树的后序遍历
public void postOrder()
{
preOrder(root);
} public void postOrder(Node node)
{
if (node == null)
{
return;
}
preOrder(node.left);
preOrder(node.right);
System.out.println(node.e);
}

二分搜索树前序遍历非递归实现

    public void preOrderNR()
{
Stack<Node> stack = new Stack<>();
stack.push(root);
while (!stack.isEmpty())
{
Node cur = stack.pop();
System.out.println(cur.e);
if (cur.right != null)
{
stack.push(cur.right);
}
if (cur.left != null)
{
stack.push(cur.left);
}
}
}

二分搜索树的层序遍历,最短路径Java的二分搜索树-LMLPHP

public void levelOrder()
{
Queue<Node> queue = new LinkedList<>();
queue.add(root);
while (!queue.isEmpty())
{
Node cur = queue.remove();
System.out.println(cur.e);
if (cur.left != null)
{
queue.add(cur.left);
}
if (cur.right != null)
{
queue.add(cur.right);
}
}
}

重写toString

@Override
public String toString()
{
StringBuffer res = new StringBuffer();
generateBSTString(root,0,res);
return res.toString();
} private void generateBSTString(Node node, int depth, StringBuffer res)
{
if (node == null)
{
res.append(generateBSTString(depth) + "null\n");
return;
}
res.append(generateBSTString(depth) + node.e + "\n");
generateBSTString(node.left,depth + 1,res);
generateBSTString(node.right,depth + 1,res);
} public String generateBSTString(int depth)
{
StringBuffer res = new StringBuffer(" ");
for (int i = 0; i < depth; i++) {
res.append("--");
}
return res.toString();
}

删除最大值和最小值

    //二分数的最大值
public E maxNode()
{
if (isEmpty())
{
throw new IllegalArgumentException("BST is empty");
}
return maxNode(root).e;
} private Node maxNode(Node node)
{
if (node.right == null)
{
return node;
}
return maxNode(node.right);
}
//二分数的最小值
public E minNode()
{
if (isEmpty())
{
throw new IllegalArgumentException("BST is empty");
}
return minNode(root).e;
} private Node minNode(Node node)
{
if (root.left == null)
{
return node;
}
return minNode(node.left);
} public E removeMax()
{
E cur = maxNode();
root = removeMax(root);
return cur;
}
//删除最大值,返回根
private Node removeMax(Node node)
{
if (node.right == null)
{
Node rightNode = node.left;
node.left = null;
size --;
return rightNode;
}
node.right = removeMax(node.right);
return node;
} public E removeMin()
{
E cur = minNode();
root = removeMin(root);
return null;
} private Node removeMin(Node node)
{
if (node.left == null)
{
Node leftNode = node.right;
node.right = null;
size--;
return leftNode;
}
node.left = removeMin(node.left);
return node;
}

删除节点

    //删除二分搜索树的节点
private Node remove(Node node, E e)
{
if (node == null)
{
return null;
}
if (e.compareTo(node.e) < 0)
{
node.left = remove(node.left,e);
return node;
}else if (e.compareTo(node.e) > 0)
{
node.right = remove(node.right,e);
return node;
}else{
if (node.right == null)
{
Node leftNode = node.left;
node.left = null;
size --;
return leftNode;
}
if (node.left == null)
{
Node righNode = node.right;
node.right = null;
size--;
return righNode;
} Node successor = minNode(node.right);
successor.right = removeMin(node.right);
successor.left = node.left; node.right = node.left = null;
return successor;
} }
04-27 23:56