一、vector与ArrayList区别
首先要说明的是vector和arraylist都是list的实现类,都是代表链表的数据结构。
java.util.Vector; 类中
package java.util;
publicclassVector<E>
extendsAbstractList<E>
implementsList<E>,RandomAccess,Cloneable, java.io.Serializable
{
protectedObject[] elementData;
protectedint elementCount;
protectedint capacityIncrement;
privatestaticfinallong serialVersionUID =-2767605614048989439L;
publicVector(int initialCapacity,int capacityIncrement){
super();
if(initialCapacity <0)
thrownewIllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData =newObject[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
publicVector(int initialCapacity){
this(initialCapacity,0);
}
publicVector(){
this(10);
}
publicVector(Collection<?extends E> c){
elementData = c.toArray();
elementCount = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if(elementData.getClass()!=Object[].class)
elementData =Arrays.copyOf(elementData, elementCount,Object[].class);
}
publicsynchronizedvoid copyInto(Object[] anArray){
System.arraycopy(elementData,0, anArray,0, elementCount);
}
/**
* Trims the capacity of this vector to be the vector's current
* size. If the capacity of this vector is larger than its current
* size, then the capacity is changed to equal the size by replacing
* its internal data array, kept in the field {@code elementData},
* with a smaller one. An application can use this operation to
* minimize the storage of a vector.
*/
publicsynchronizedvoid trimToSize(){
modCount++;
int oldCapacity = elementData.length;
if(elementCount < oldCapacity){
elementData =Arrays.copyOf(elementData, elementCount);
}
}
publicsynchronizedvoid ensureCapacity(int minCapacity){
modCount++;
ensureCapacityHelper(minCapacity);
}
/**
* This implements the unsynchronized semantics of ensureCapacity.
* Synchronized methods in this class can internally call this
* method for ensuring capacity without incurring the cost of an
* extra synchronization.
*
* @see #ensureCapacity(int)
*/
privatevoid ensureCapacityHelper(int minCapacity){
int oldCapacity = elementData.length;
if(minCapacity > oldCapacity){
Object[] oldData = elementData;
int newCapacity =(capacityIncrement >0)?
(oldCapacity + capacityIncrement):(oldCapacity *2);
if(newCapacity < minCapacity){
newCapacity = minCapacity;
}
elementData =Arrays.copyOf(elementData, newCapacity);
}
}
/**
* Sets the size of this vector. If the new size is greater than the
* current size, new {@code null} items are added to the end of
* the vector. If the new size is less than the current size, all
* components at index {@code newSize} and greater are discarded.
*
* @param newSize the new size of this vector
* @throws ArrayIndexOutOfBoundsException if the new size is negative
*/
publicsynchronizedvoid setSize(int newSize){
modCount++;
if(newSize > elementCount){
ensureCapacityHelper(newSize);
}else{
for(int i = newSize ; i < elementCount ; i++){
elementData[i]=null;
}
}
elementCount = newSize;
}
/**
* Returns the current capacity of this vector.
*
* @return the current capacity (the length of its internal
* data array, kept in the field {@code elementData}
* of this vector)
*/
publicsynchronizedint capacity(){
return elementData.length;
}
/**
* Returns the number of components in this vector.
*
* @return the number of components in this vector
*/
publicsynchronizedint size(){
return elementCount;
}
/**
* Tests if this vector has no components.
*
* @return {@code true} if and only if this vector has
* no components, that is, its size is zero;
* {@code false} otherwise.
*/
publicsynchronizedboolean isEmpty(){
return elementCount ==0;
}
/**
* Returns an enumeration of the components of this vector. The
* returned {@code Enumeration} object will generate all items in
* this vector. The first item generated is the item at index {@code 0},
* then the item at index {@code 1}, and so on.
*
* @return an enumeration of the components of this vector
* @see Iterator
*/
publicEnumeration<E> elements(){
returnnewEnumeration<E>(){
int count =0;
publicboolean hasMoreElements(){
return count < elementCount;
}
public E nextElement(){
synchronized(Vector.this){
if(count < elementCount){
return(E)elementData[count++];
}
}
thrownewNoSuchElementException("Vector Enumeration");
}
};
}
/**
* Returns {@code true} if this vector contains the specified element.
* More formally, returns {@code true} if and only if this vector
* contains at least one element {@code e} such that
* <tt>(o==null ? e==null : o.equals(e))</tt>.
*
* @param o element whose presence in this vector is to be tested
* @return {@code true} if this vector contains the specified element
*/
publicboolean contains(Object o){
return indexOf(o,0)>=0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the lowest index {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
publicint indexOf(Object o){
return indexOf(o,0);
}
/**
* Returns the index of the first occurrence of the specified element in
* this vector, searching forwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the lowest index {@code i} such that
* <tt>(i >= index && (o==null ? get(i)==null : o.equals(get(i))))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching from
* @return the index of the first occurrence of the element in
* this vector at position {@code index} or later in the vector;
* {@code -1} if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is negative
* @see Object#equals(Object)
*/
publicsynchronizedint indexOf(Object o,int index){
if(o ==null){
for(int i = index ; i < elementCount ; i++)
if(elementData[i]==null)
return i;
}else{
for(int i = index ; i < elementCount ; i++)
if(o.equals(elementData[i]))
return i;
}
return-1;
}
/**
* Returns the index of the last occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the highest index {@code i} such that
* <tt>(o==null ? get(i)==null : o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
publicsynchronizedint lastIndexOf(Object o){
return lastIndexOf(o, elementCount-1);
}
/**
* Returns the index of the last occurrence of the specified element in
* this vector, searching backwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the highest index {@code i} such that
* <tt>(i <= index && (o==null ? get(i)==null : o.equals(get(i))))</tt>,
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching backwards from
* @return the index of the last occurrence of the element at position
* less than or equal to {@code index} in this vector;
* -1 if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is greater
* than or equal to the current size of this vector
*/
publicsynchronizedint lastIndexOf(Object o,int index){
if(index >= elementCount)
thrownewIndexOutOfBoundsException(index +" >= "+ elementCount);
if(o ==null){
for(int i = index; i >=0; i--)
if(elementData[i]==null)
return i;
}else{
for(int i = index; i >=0; i--)
if(o.equals(elementData[i]))
return i;
}
return-1;
}
/**
* Returns the component at the specified index.
*
* <p>This method is identical in functionality to the {@link #get(int)}
* method (which is part of the {@link List} interface).
*
* @param index an index into this vector
* @return the component at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
publicsynchronized E elementAt(int index){
if(index >= elementCount){
thrownewArrayIndexOutOfBoundsException(index +" >= "+ elementCount);
}
return(E)elementData[index];
}
/**
* Returns the first component (the item at index {@code 0}) of
* this vector.
*
* @return the first component of this vector
* @throws NoSuchElementException if this vector has no components
*/
publicsynchronized E firstElement(){
if(elementCount ==0){
thrownewNoSuchElementException();
}
return(E)elementData[0];
}
/**
* Returns the last component of the vector.
*
* @return the last component of the vector, i.e., the component at index
* <code>size() - 1</code>.
* @throws NoSuchElementException if this vector is empty
*/
publicsynchronized E lastElement(){
if(elementCount ==0){
thrownewNoSuchElementException();
}
return(E)elementData[elementCount -1];
}
/**
* Sets the component at the specified {@code index} of this
* vector to be the specified object. The previous component at that
* position is discarded.
*
* <p>The index must be a value greater than or equal to {@code 0}
* and less than the current size of the vector.
*
* <p>This method is identical in functionality to the
* {@link #set(int, Object) set(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code set} method reverses the order of the parameters, to more closely
* match array usage. Note also that the {@code set} method returns the
* old value that was stored at the specified position.
*
* @param obj what the component is to be set to
* @param index the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
publicsynchronizedvoid setElementAt(E obj,int index){
if(index >= elementCount){
thrownewArrayIndexOutOfBoundsException(index +" >= "+
elementCount);
}
elementData[index]= obj;
}
publicsynchronizedvoid removeElementAt(int index){
modCount++;
if(index >= elementCount){
thrownewArrayIndexOutOfBoundsException(index +" >= "+
elementCount);
}
elseif(index <0){
thrownewArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index -1;
if(j >0){
System.arraycopy(elementData, index +1, elementData, index, j);
}
elementCount--;
elementData[elementCount]=null;/* to let gc do its work */
}
/**
* Inserts the specified object as a component in this vector at the
* specified {@code index}. Each component in this vector with
* an index greater or equal to the specified {@code index} is
* shifted upward to have an index one greater than the value it had
* previously.
*
* <p>The index must be a value greater than or equal to {@code 0}
* and less than or equal to the current size of the vector. (If the
* index is equal to the current size of the vector, the new element
* is appended to the Vector.)
*
* <p>This method is identical in functionality to the
* {@link #add(int, Object) add(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code add} method reverses the order of the parameters, to more closely
* match array usage.
*
* @param obj the component to insert
* @param index where to insert the new component
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index > size()})
*/
publicsynchronizedvoid insertElementAt(E obj,int index){
modCount++;
if(index > elementCount){
thrownewArrayIndexOutOfBoundsException(index
+" > "+ elementCount);
}
ensureCapacityHelper(elementCount +1);
System.arraycopy(elementData, index, elementData, index +1, elementCount - index);
elementData[index]= obj;
elementCount++;
}
/**
* Adds the specified component to the end of this vector,
* increasing its size by one. The capacity of this vector is
* increased if its size becomes greater than its capacity.
*
* <p>This method is identical in functionality to the
* {@link #add(Object) add(E)}
* method (which is part of the {@link List} interface).
*
* @param obj the component to be added
*/
publicsynchronizedvoid addElement(E obj){
modCount++;
ensureCapacityHelper(elementCount +1);
elementData[elementCount++]= obj;
}
/**
* Removes the first (lowest-indexed) occurrence of the argument
* from this vector. If the object is found in this vector, each
* component in the vector with an index greater or equal to the
* object's index is shifted downward to have an index one smaller
* than the value it had previously.
*
* <p>This method is identical in functionality to the
* {@link #remove(Object)} method (which is part of the
* {@link List} interface).
*
* @param obj the component to be removed
* @return {@code true} if the argument was a component of this
* vector; {@code false} otherwise.
*/
publicsynchronizedboolean removeElement(Object obj){
modCount++;
int i = indexOf(obj);
if(i >=0){
removeElementAt(i);
returntrue;
}
returnfalse;
}
/**
* Removes all components from this vector and sets its size to zero.
*
* <p>This method is identical in functionality to the {@link #clear}
* method (which is part of the {@link List} interface).
*/
publicsynchronizedvoid removeAllElements(){
modCount++;
// Let gc do its work
for(int i =0; i < elementCount; i++)
elementData[i]=null;
elementCount =0;
}
/**
* Returns a clone of this vector. The copy will contain a
* reference to a clone of the internal data array, not a reference
* to the original internal data array of this {@code Vector} object.
*
* @return a clone of this vector
*/
publicsynchronizedObject clone(){
try{
Vector<E> v =(Vector<E>)super.clone();
v.elementData =Arrays.copyOf(elementData, elementCount);
v.modCount =0;
return v;
}catch(CloneNotSupportedException e){
// this shouldn't happen, since we are Cloneable
thrownewInternalError();
}
}
/**
* Returns an array containing all of the elements in this Vector
* in the correct order.
*
* @since 1.2
*/
publicsynchronizedObject[] toArray(){
returnArrays.copyOf(elementData, elementCount);
}
publicsynchronized<T> T[] toArray(T[] a){
if(a.length < elementCount)
return(T[])Arrays.copyOf(elementData, elementCount, a.getClass());
System.arraycopy(elementData,0, a,0, elementCount);
if(a.length > elementCount)
a[elementCount]=null;
return a;
}
// Positional Access Operations
/**
* Returns the element at the specified position in this Vector.
*
* @param index index of the element to return
* @return object at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
publicsynchronized E get(int index){
if(index >= elementCount)
thrownewArrayIndexOutOfBoundsException(index);
return(E)elementData[index];
}
/**
* Replaces the element at the specified position in this Vector with the
* specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
publicsynchronized E set(int index, E element){
if(index >= elementCount)
thrownewArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
elementData[index]= element;
return(E)oldValue;
}
/**
* Appends the specified element to the end of this Vector.
*
* @param e element to be appended to this Vector
* @return {@code true} (as specified by {@link Collection#add})
* @since 1.2
*/
publicsynchronizedboolean add(E e){
modCount++;
ensureCapacityHelper(elementCount +1);
elementData[elementCount++]= e;
returntrue;
}
publicboolean remove(Object o){
return removeElement(o);
}
publicvoid add(int index, E element){
insertElementAt(element, index);
}
publicsynchronized E remove(int index){
modCount++;
if(index >= elementCount)
thrownewArrayIndexOutOfBoundsException(index);
Object oldValue = elementData[index];
int numMoved = elementCount - index -1;
if(numMoved >0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount]=null;// Let gc do its work
return(E)oldValue;
}
publicvoid clear(){
removeAllElements();
}
// Bulk Operations
publicsynchronizedboolean containsAll(Collection<?> c){
returnsuper.containsAll(c);
}
publicsynchronizedboolean addAll(Collection<?extends E> c){
modCount++;
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
System.arraycopy(a,0, elementData, elementCount, numNew);
elementCount += numNew;
return numNew !=0;
}
publicsynchronizedboolean removeAll(Collection<?> c){
returnsuper.removeAll(c);
}
publicsynchronizedboolean retainAll(Collection<?> c){
returnsuper.retainAll(c);
}
publicsynchronizedboolean addAll(int index,Collection<?extends E> c){
modCount++;
if(index <0|| index > elementCount)
thrownewArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityHelper(elementCount + numNew);
int numMoved = elementCount - index;
if(numMoved >0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved);
System.arraycopy(a,0, elementData, index, numNew);
elementCount += numNew;
return numNew !=0;
}
/**
* Compares the specified Object with this Vector for equality. Returns
* true if and only if the specified Object is also a List, both Lists
* have the same size, and all corresponding pairs of elements in the two
* Lists are <em>equal</em>. (Two elements {@code e1} and
* {@code e2} are <em>equal</em> if {@code (e1==null ? e2==null :
* e1.equals(e2))}.) In other words, two Lists are defined to be
* equal if they contain the same elements in the same order.
*
* @param o the Object to be compared for equality with this Vector
* @return true if the specified Object is equal to this Vector
*/
publicsynchronizedboolean equals(Object o){
returnsuper.equals(o);
}
/**
* Returns the hash code value for this Vector.
*/
publicsynchronizedint hashCode(){
returnsuper.hashCode();
}
/**
* Returns a string representation of this Vector, containing
* the String representation of each element.
*/
publicsynchronizedString toString(){
returnsuper.toString();
}
publicsynchronizedList<E> subList(int fromIndex,int toIndex){
returnCollections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
protectedsynchronizedvoid removeRange(int fromIndex,int toIndex){
modCount++;
int numMoved = elementCount - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved);
// Let gc do its work
int newElementCount = elementCount -(toIndex-fromIndex);
while(elementCount != newElementCount)
elementData[--elementCount]=null;
}
privatesynchronizedvoid writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException
{
s.defaultWriteObject();
}
}
说明:vector中使用到了synchronized关键字,也就是说vector是线程安全的!同理可知ArrayList是线程不安全的;
所以vector中操作成员的方法必须保证同步才行,所以效率上就没有ArrayList的高;
一般情况下,需要保持同步的情况下才使用vector,多数情况下使用ArrayList。
二、hashmap与hashtable
同vector与arrayList一样,hashmap与hashtable也是相同的道理
看看HashMap的类
package java.util;
import java.io.*;
publicclassHashMap<K,V>
extendsAbstractMap<K,V>
implementsMap<K,V>,Cloneable,Serializable
{
/**
* The default initial capacity - MUST be a power of two.
*/
staticfinalint DEFAULT_INITIAL_CAPACITY =16;
/**
* The maximum capacity, used if a higher value is implicitly specified
* by either of the constructors with arguments.
* MUST be a power of two <= 1<<30.
*/
staticfinalint MAXIMUM_CAPACITY =1<<30;
/**
* The load factor used when none specified in constructor.
*/
staticfinalfloat DEFAULT_LOAD_FACTOR =0.75f;
/**
* The table, resized as necessary. Length MUST Always be a power of two.
*/
transientEntry[] table;
/**
* The number of key-value mappings contained in this map.
*/
transientint size;
/**
* The next size value at which to resize (capacity * load factor).
* @serial
*/
int threshold;
/**
* The load factor for the hash table.
*
* @serial
*/
finalfloat loadFactor;
/**
* The number of times this HashMap has been structurally modified
* Structural modifications are those that change the number of mappings in
* the HashMap or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the HashMap fail-fast. (See ConcurrentModificationException).
*/
transientvolatileint modCount;
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and load factor.
*
* @param initialCapacity the initial capacity
* @param loadFactor the load factor
* @throws IllegalArgumentException if the initial capacity is negative
* or the load factor is nonpositive
*/
publicHashMap(int initialCapacity,float loadFactor){
if(initialCapacity <0)
thrownewIllegalArgumentException("Illegal initial capacity: "+
initialCapacity);
if(initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if(loadFactor <=0||Float.isNaN(loadFactor))
thrownewIllegalArgumentException("Illegal load factor: "+
loadFactor);
// Find a power of 2 >= initialCapacity
int capacity =1;
while(capacity < initialCapacity)
capacity <<=1;
this.loadFactor = loadFactor;
threshold =(int)(capacity * loadFactor);
table =newEntry[capacity];
init();
}
/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
publicHashMap(int initialCapacity){
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
publicHashMap(){
this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold =(int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table =newEntry[DEFAULT_INITIAL_CAPACITY];
init();
}
/**
* Constructs a new <tt>HashMap</tt> with the same mappings as the
* specified <tt>Map</tt>. The <tt>HashMap</tt> is created with
* default load factor (0.75) and an initial capacity sufficient to
* hold the mappings in the specified <tt>Map</tt>.
*
* @param m the map whose mappings are to be placed in this map
* @throws NullPointerException if the specified map is null
*/
publicHashMap(Map<?extends K,?extends V> m){
this(Math.max((int)(m.size()/ DEFAULT_LOAD_FACTOR)+1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
putAllForCreate(m);
}
// internal utilities
/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/
void init(){
}
/**
* Applies a supplemental hash function to a given hashCode, which
* defends against poor quality hash functions. This is critical
* because HashMap uses power-of-two length hash tables, that
* otherwise encounter collisions for hashCodes that do not differ
* in lower bits. Note: Null keys always map to hash 0, thus index 0.
*/
staticint hash(int h){
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^=(h >>>20)^(h >>>12);
return h ^(h >>>7)^(h >>>4);
}
/**
* Returns index for hash code h.
*/
staticint indexFor(int h,int length){
return h &(length-1);
}
/**
* Returns the number of key-value mappings in this map.
*
* @return the number of key-value mappings in this map
*/
publicint size(){
return size;
}
/**
* Returns <tt>true</tt> if this map contains no key-value mappings.
*
* @return <tt>true</tt> if this map contains no key-value mappings
*/
publicboolean isEmpty(){
return size ==0;
}
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* <p>More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
* <p>A return value of {@code null} does not <i>necessarily</i>
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key){
if(key ==null)
return getForNullKey();
int hash = hash(key.hashCode());
for(Entry<K,V> e = table[indexFor(hash, table.length)];
e !=null;
e = e.next){
Object k;
if(e.hash == hash &&((k = e.key)== key || key.equals(k)))
return e.value;
}
returnnull;
}
/**
* Offloaded version of get() to look up null keys. Null keys map
* to index 0. This null case is split out into separate methods
* for the sake of performance in the two most commonly used
* operations (get and put), but incorporated with conditionals in
* others.
*/
private V getForNullKey(){
for(Entry<K,V> e = table[0]; e !=null; e = e.next){
if(e.key ==null)
return e.value;
}
returnnull;
}
/**
* Returns <tt>true</tt> if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return <tt>true</tt> if this map contains a mapping for the specified
* key.
*/
publicboolean containsKey(Object key){
return getEntry(key)!=null;
}
/**
* Returns the entry associated with the specified key in the
* HashMap. Returns null if the HashMap contains no mapping
* for the key.
*/
finalEntry<K,V> getEntry(Object key){
int hash =(key ==null)?0: hash(key.hashCode());
for(Entry<K,V> e = table[indexFor(hash, table.length)];
e !=null;
e = e.next){
Object k;
if(e.hash == hash &&
((k = e.key)== key ||(key !=null&& key.equals(k))))
return e;
}
returnnull;
}
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with <tt>key</tt>, or
* <tt>null</tt> if there was no mapping for <tt>key</tt>.
* (A <tt>null</tt> return can also indicate that the map
* previously associated <tt>null</tt> with <tt>key</tt>.)
*/
public V put(K key, V value){
if(key ==null)
return putForNullKey(value);
int hash = hash(key.hashCode());
int i = indexFor(hash, table.length);
for(Entry<K,V> e = table[i]; e !=null; e = e.next){
Object k;
if(e.hash == hash &&((k = e.key)== key || key.equals(k))){
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(hash, key, value, i);
returnnull;
}
/**
* Offloaded version of put for null keys
*/
private V putForNullKey(V value){
for(Entry<K,V> e = table[0]; e !=null; e = e.next){
if(e.key ==null){
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0,null, value,0);
returnnull;
}
// These methods are used when serializing HashSets
int capacity(){return table.length;}
float loadFactor(){return loadFactor;}
} HashTable类 publicclassHashtable<K,V>
extendsDictionary<K,V>
implementsMap<K,V>,Cloneable, java.io.Serializable{
/**
* The hash table data.
*/
privatetransientEntry[] table;
/**
* The total number of entries in the hash table.
*/
privatetransientint count;
/**
* The table is rehashed when its size exceeds this threshold. (The
* value of this field is (int)(capacity * loadFactor).)
*
* @serial
*/
privateint threshold;
/**
* The load factor for the hashtable.
*
* @serial
*/
privatefloat loadFactor;
/**
* The number of times this Hashtable has been structurally modified
* Structural modifications are those that change the number of entries in
* the Hashtable or otherwise modify its internal structure (e.g.,
* rehash). This field is used to make iterators on Collection-views of
* the Hashtable fail-fast. (See ConcurrentModificationException).
*/
privatetransientint modCount =0;
/** use serialVersionUID from JDK 1.0.2 for interoperability */
privatestaticfinallong serialVersionUID =1421746759512286392L;
/**
* Constructs a new, empty hashtable with the specified initial
* capacity and the specified load factor.
*
* @param initialCapacity the initial capacity of the hashtable.
* @param loadFactor the load factor of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
publicHashtable(int initialCapacity,float loadFactor){
if(initialCapacity <0)
thrownewIllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if(loadFactor <=0||Float.isNaN(loadFactor))
thrownewIllegalArgumentException("Illegal Load: "+loadFactor);
if(initialCapacity==0)
initialCapacity =1;
this.loadFactor = loadFactor;
table =newEntry[initialCapacity];
threshold =(int)(initialCapacity * loadFactor);
}
/**
* Constructs a new, empty hashtable with the specified initial capacity
* and default load factor (0.75).
*
* @param initialCapacity the initial capacity of the hashtable.
* @exception IllegalArgumentException if the initial capacity is less
* than zero.
*/
publicHashtable(int initialCapacity){
this(initialCapacity,0.75f);
}
/**
* Constructs a new, empty hashtable with a default initial capacity (11)
* and load factor (0.75).
*/
publicHashtable(){
this(11,0.75f);
}
/**
* Constructs a new hashtable with the same mappings as the given
* Map. The hashtable is created with an initial capacity sufficient to
* hold the mappings in the given Map and a default load factor (0.75).
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
publicHashtable(Map<?extends K,?extends V> t){
this(Math.max(2*t.size(),11),0.75f);
putAll(t);
}
/**
* Returns the number of keys in this hashtable.
*
* @return the number of keys in this hashtable.
*/
publicsynchronizedint size(){
return count;
}
/**
* Tests if this hashtable maps no keys to values.
*
* @return <code>true</code> if this hashtable maps no keys to values;
* <code>false</code> otherwise.
*/
publicsynchronizedboolean isEmpty(){
return count ==0;
}
/**
* Returns an enumeration of the keys in this hashtable.
*
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
publicsynchronizedEnumeration<K> keys(){
returnthis.<K>getEnumeration(KEYS);
}
- HashTable的方法是同步的,HashMap不能同步,所以在线程多的场合要使用HashTable;
- HashTable不允许空值(key和value都不可以为null),hashmap则可以为null
- HashTable有一个contains()的方法,功能和containsValue()一样
- HashTable使用Enumeration,而HashMap使用Iterator
- HashTabe中的hash数组默认大小为11,增长方式为old*2+1,hashmap的hash为16,是2的指数倍
- 哈希值的使用不同,HashTable直接使用对象hashcode,而HashMap会重新计算hash值