题目描述 Description

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

  例如 N=4,4 堆纸牌数分别为:
  ① 9 ② 8 ③ 17 ④ 6
  移动3次可达到目的:
  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入描述 Input Description

第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出描述 Output Description

输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘

样例输入 Sample Input

4
9 8 17 6

样例输出 Sample Output

3

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
这个是用贪心。。。。我觉得,从左边到右边遍历数组,如果数组中的元素比平均值大,就向右边移动几个,如果比平均值小,右边的往这个移动几个,数组的元素经过移动后可以为负数,并不影响结果,等等也算是模拟????????????
C++代码:
#include<iostream>
using namespace std;
const int maxn = ;
int a[maxn];
int main(){
int n;
cin>>n;
int sum = ;
for(int i = ;i < n; i++){
cin>>a[i];
sum += a[i];
}
int ave = sum/n;
int num = ;
for(int i = ;i < n; i++){
if(a[i] > ave){
a[i+] += (a[i] - ave);
num++;
}
else if(a[i] < ave){
a[i+] -= (ave - a[i]);
num++;
}
}
cout<<num<<endl;
return ;
}
05-11 13:25