……普及组的题目都做不出来……(;´д`)ゞ……再这样下去要退役了啊……

  不过不管怎样感觉这题还是蛮好的,也要记录一下下~

  我们注意到数据的范围,n 是 1e5, 又有 1e5组询问,暴力大概是 \(n^{2}logn\) 的吧。这个数据范围提示我们处理一组询问的复杂度应该要控制在 \(logn\) 的范围内,所以联想到前一问的答案应该会对后面的答案产生贡献。

  于是贪心。如果在当前已经确定了 \(x\) 个推销的地方,考虑第 \(x + 1\) 个究竟应该放在哪里。如果在到达的最远的地方的右方,疲惫值增加 \(a[i] + 2 * S[i] - S[last]\) ,如果在前方,增加 \(a[i]\) 。这样就可以每次增加一个元素,求出所需答案了。可以使用线段树来维护:

  对我知道有更简短的,可我就是喜欢线段树怎么着?

#include <bits/stdc++.h>
using namespace std;
#define maxn 100000
int n, a[maxn], S[maxn];
int ans, last; int read()
{
int x = , k = ;
char c;
c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct node
{
int id, sum;
node(int x = , int y = ) { id = x, sum = y; }
friend bool operator <(const node& a, const node& b)
{
if(a.sum != b.sum) return a.sum < b.sum;
return a.id < b.id;
}
}; struct Segament_Tree
{
node T[maxn * ];
void build(int u, int l, int r, int opt)
{
if(l == r)
{
T[u].id = l, T[u].sum = opt ? a[l] : * S[l] + a[l];
return;
}
int mid = (l + r) >> ;
build(u << , l, mid, opt); build(u << | , mid + , r, opt);
T[u] = max(T[u << ], T[u << | ]);
} void clear(int u, int l, int r, int x)
{
int mid = (l + r) >> ;
if(l == r)
{
T[u] = node(, );
return;
}
if(x <= mid) clear(u << , l, mid, x);
else clear(u << | , mid + , r, x);
T[u] = max(T[u << ], T[u << | ]);
} node Query(int u, int l, int r, int L, int R)
{
if(L > R) return node(, );
int mid = (l + r) >> ;
if(L > r || R < l) return node(, );
if(L <= l && R >= r) return T[u];
return max(Query(u << , l, mid, L, R), Query(u << | , mid + , r, L, R));
}
}T1, T2; int main()
{
n = read();
for(int i = ; i <= n; i ++) S[i] = read();
for(int i = ; i <= n; i ++) a[i] = read();
T1.build(, , n, ), T2.build(, , n, );
node P = T2.Query(, , n, , n); last = P.id;
T1.clear(, , n, last), T2.clear(, , n, last);
printf("%d\n", ans = P.sum);
for(int i = ; i <= n; i ++)
{
node t1 = T1.Query(, , n, , last - );
node t2 = T2.Query(, , n, last + , n);
t2.sum -= * S[last];
node t3 = max(t1, t2);
if(t1 < t2) last = t3.id, T1.clear(, , n, last), T2.clear(, , n, last);
else T1.clear(, , n, t3.id), T2.clear(, , n, last);
printf("%d\n", ans += t3.sum);
}
return ;
}
05-11 20:26