修路

Time Limit: 20 Sec  Memory Limit: 256 MB

Description

  【BZOJ4774】修路 [斯坦纳树]-LMLPHP

Input

  【BZOJ4774】修路 [斯坦纳树]-LMLPHP

Output

  仅一行一个整数表示答案。

Sample Input

  5 5 2
  1 3 4
  3 5 2
  2 3 1
  3 4 4
  2 4 3

Sample Output

  9

HINT

  【BZOJ4774】修路 [斯坦纳树]-LMLPHP

Main idea

  给定若干对点,选择若干边,询问满足每对点都连通的最小代价。

Solution

  发现 d 非常小,所以我们显然可以使用斯坦纳树来求解。

  斯坦纳树是用来解决这种问题的:给定若干关键点,求使得关键点连通的最小代价

  我们可以令 f[i][opt] 表示以 i 为根时,关键点连通态为opt的最小代价。(以二进制表示是否连通)

  然后我们就可以用两种方法来更新 f[i][opt]:

  1. 设定集合x,y,x∪y=opt且x∩y=∅,那么我们显然就可以将用x,y合并来更新opt,
  2. 若 f[j][opt] 中opt = f[i][opt]中opt,那么我们就可以以连边方式合并两个集合,这种合并方式显然可以用最短路实现,使得答案更优。

  然后我们就可以求出所有状态的f[i][opt],接下来再利用DP,求解。

  定义Ans[opt]表示连通态为opt时最小代价,如果对应点同时连通或不连通则可以更新,枚举所有情况就可以求出答案了。

Code

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std; const int ONE = ;
const int MOD = 1e9+; int n,m,d;
int x,y,z;
int a[ONE];
int next[ONE],first[ONE],go[ONE],w[ONE],tot;
int All,f[ONE/][],INF;
int q[],vis[ONE],tou,wei;
int Ans[]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Add(int u,int v,int z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; w[tot]=z;
} namespace Steiner
{
void pre()
{
memset(f,,sizeof(f)); INF=f[][];
int num = ;
for(int i=;i<=d;i++) f[i][<<num] = , num++;
for(int i=n-d+;i<=n;i++) f[i][<<num] = , num++;
All = (<<num) - ;
} void Spfa(int opt)
{
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(f[v][opt] > f[u][opt] + w[e])
{
f[v][opt] = f[u][opt] + w[e];
if(!vis[v])
{
vis[v] = ;
q[++wei] = v;
}
}
}
vis[u] = ;
}
} void Deal()
{
for(int opt=;opt<=All;opt++)
{
for(int i=;i<=n;i++)
{
for(int sub=opt;sub;sub=(sub-) & opt)
f[i][opt] = min(f[i][opt],f[i][sub]+f[i][opt^sub]);
if(f[i][opt] != INF)
{
q[++wei] = i;
vis[i] = ;
}
}
Spfa(opt);
}
}
} bool Check(int opt)
{
for(int i=,j=(d<<)-; i<d; i++,j--)
if( ((opt & (<<i))== ) != ((opt & (<<j))==) )
return ;
return ;
} int main()
{
n=get(); m=get(); d=get();
for(int i=;i<=m;i++)
{
x=get(); y=get(); z=get();
Add(x,y,z);
} Steiner::pre();
Steiner::Deal(); memset(Ans,,sizeof(Ans));
for(int opt=;opt<=All;opt++)
if(Check(opt))
{
for(int i=;i<=n;i++)
Ans[opt] = min(Ans[opt], f[i][opt]);
} for(int opt=;opt<=All;opt++)
for(int sub=opt;sub;sub=(sub-) & opt)
Ans[opt] = min(Ans[opt], Ans[sub]+Ans[opt^sub]); if(Ans[All] == INF) printf("-1");
else printf("%d",Ans[All]);
}
05-11 22:06