问题描述
给定一个十进制整数N,求出从1到N的所有整数中出现”1”的个数。
例如:N=2时 1,2出现了1个 “1” 。
N=12时 1,2,3,4,5,6,7,8,9,10,11,12。出现了5个“1”。
方法一 暴力求解
最直接的方法就是从1开始遍历到N,将其中每一个数中含有“1”的个数加起来,就得到了问题的解。
下面给出代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int main()
{
int n,x,t;
while(scanf("%d",&n)!=EOF)
{
int ans=;
for(int i=;i<=n;i++)
{
t=i;
while(t)
{
if(t%==)
++ans;
t=t/;
}
}
printf("%d\n",ans);
}
return ;
}
该算法的时间复杂度为O(N*lgN)
(注:此方法对较大的数据有可能会TL)
解法二
1位数的情况:
在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。
2位数的情况:
N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。
N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。
由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。
3位数的情况:
N=123
个位出现1的个数为13:1,11,21,…,91,101,111,121
十位出现1的个数为20:10~19,110~119
百位出现1的个数为24:100~123
我们可以继续分析4位数,5位数,推导出下面一般情况:
假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。
如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。
如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。
如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。
综合以上分析,写出如下代码:
#include<iostream>
#include<cstdio>
#include<map>
#include<cstring>
#include<string>
#include<algorithm>
#include<queue>
#include<vector>
#include<stack>
#include<cstdlib>
#include<cctype>
#include<cmath>
#define LL long long
using namespace std;
int CountOne(int n) {
int cnt = ;
int i = ;
int current = , after = , before = ;
while ((n / i) != ) {
current = (n / i) % ;
before = n / (i * );
after = n - (n / i) * i;
if (current > )
cnt = cnt + (before + ) * i;
else if (current == )
cnt = cnt + before * i;
else if (current == )
cnt = cnt + before * i + after + ;
i = i * ;
}
return cnt;
}
int main()
{
int n;
while(cin>>n){
int res=CountOne(n);
cout<<res<<endl;
}
return ;
}