P1346 电车
题目描述
在一个神奇的小镇上有着一个特别的电车网络,它由一些路口和轨道组成,每个路口都连接着若干个轨道,每个轨道都通向一个路口(不排除有的观光轨道转一圈后返回路口的可能)。在每个路口,都有一个开关决定着出去的轨道,每个开关都有一个默认的状态,每辆电车行驶到路口之后,只能从开关所指向的轨道出去,如果电车司机想走另一个轨道,他就必须下车切换开关的状态。
为了行驶向目标地点,电车司机不得不经常下车来切换开关,于是,他们想请你写一个程序,计算一辆从路口A到路口B最少需要下车切换几次开关。
输入输出格式
输入格式:
第一行有3个整数2<=N<=100,1<=A,B<=N,分别表示路口的数量,和电车的起点,终点。
接下来有N行,每行的开头有一个数字Ki(0<=Ki<=N-1),表示这个路口与Ki条轨道相连,接下来有Ki个数字表示每条轨道所通向的路口,开关默认指向第一个数字表示的轨道。
输出格式:
输出文件只有一个数字,表示从A到B所需的最少的切换开关次数,若无法从A前往B,输出-1。
输入输出样例
输入样例#1:
3 2 1
2 2 3
2 3 1
2 1 2
输出样例#1:
0
输入时,第一个指向点(也就是数据中第一个输入的点)时,权值为0,除此以外权值为1。是因为每个点最多就访问一次,所以每个路口也最多变更一次状态。所以这也就差不多是个裸的最短路了
#include<cstdio>
#include<cstring> const int MAXN = ;
int dis[MAXN];
int w[MAXN][MAXN];
bool vis[MAXN];
int cnt,n,st,en,minn; void dijkstra()
{ for (int i=; i<=n; ++i) dis[i] = w[st][i];
dis[st] = ;
vis[st] = true;
for (int i=; i<n; ++i)
{
int u = ;
minn = 1e7;
for (int j=; j<=n; ++j)
if (dis[j]<minn && !vis[j])
{
minn = dis[j];
u = j;
}
if (u==) break;
vis[u] = true;
for (int v=; v<=n; ++v)
{
if (!vis[v]&&dis[v]>dis[u]+w[u][v])
dis[v] = dis[u]+w[u][v];
}
}
}
int main()
{
memset(w,0x3f,sizeof(w));
scanf("%d%d%d",&n,&st,&en);
for (int x,y,i=; i<=n; ++i)
{
w[i][i] = ;
scanf("%d",&x);
for (int j=; j<=x; ++j)
{
scanf("%d",&y);
if (j==) w[i][y] = ;
else w[i][y] = ;
}
}
dijkstra();
if (dis[en]>=1e8) printf("-1");
else printf("%d",dis[en]);
return ;
}