可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和。

  于是先求出上述定义中的质数个数,线性筛即可。然后对每个最短时间求方案数,非常显然的组合数。最好特判一下l=1的情况,毕竟如果1作为质数会有奇怪的事。

  我的线性筛……跑的几乎跟埃氏筛差不多慢。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 10000010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,l,r,prime[N],fac[N],inv[N],cnt,sum,ans;
bool flag[N];
int C(int n,int m){return 1ll*fac[n]*inv[n-m]%P*inv[m]%P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5323.in","r",stdin);
freopen("bzoj5323.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
l=read(),r=read();n=r-l+;
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*i*fac[i-]%P;
inv[]=inv[]=;for (int i=;i<=n;i++) inv[i]=P-1ll*(P/i)*inv[P%i]%P;
for (int i=;i<=n;i++) inv[i]=1ll*inv[i]*inv[i-]%P;
if (l==) sum=;
else
{
for (int i=;i<l;i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<l;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
sum=-cnt;
for (int i=l;i<=r;i++)
{
if (!flag[i]) prime[++cnt]=i;
for (int j=;j<=cnt&&prime[j]*i<=r;j++)
{
flag[prime[j]*i]=;
if (i%prime[j]==) break;
}
}
sum+=cnt;
}
for (int i=sum;i<=n;i++) ans=(ans+1ll*fac[n-sum]*C(i-,sum-)%P*i)%P;
cout<<1ll*ans*fac[sum]%P;
return ;
}
04-19 21:53