【题目链接】 http://poj.org/problem?id=3177
【题目大意】
给出一张图,问增加几条边,使得整张图构成双连通分量
【题解】
首先我们对图进行双连通分量缩点,
那么问题就转化为给出一棵树,加边使得其成为边双连通分量的最小边数,
只要从叶节点连一条边到任意节点,那么就可以使得这个叶节点加入到双连通分量中,
那么优先叶节点和叶节点连接,所以其答案为(叶节点+1)/2
【代码】
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N=5010,M=10010;
int e[M][2],cut[M],g[N],v[M<<1],nxt[M<<1],ed=1;
int f[N],dfn[N],low[N],num,cnt,from[N],d[N];
void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;}
void tarjan(int x){
dfn[x]=low[x]=++num;
for(int i=g[x];i;i=nxt[i])if(!dfn[v[i]]){
f[v[i]]=i>>1,tarjan(v[i]);
if(low[x]>low[v[i]])low[x]=low[v[i]];
}else if(f[x]!=(i>>1)&&low[x]>dfn[v[i]])low[x]=dfn[v[i]];
if(f[x]&&low[x]==dfn[x])cut[f[x]]=1;
}
void dfs(int x,int y){
from[x]=y;
for(int i=g[x];i;i=nxt[i])if(!from[v[i]]&&!cut[i>>1])dfs(v[i],y);
}
int n,m;
int main(){
while(~scanf("%d%d",&n,&m)){
memset(g,0,sizeof(g));
memset(d,0,sizeof(d));
memset(from,0,sizeof(from));
memset(f,0,sizeof(f));
memset(cut,0,sizeof(cut));
num=0; ed=1; // 求边双连通分量时,ed一定要为1
for(int i=1;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
e[i][0]=u; e[i][1]=v;
add(u,v);add(v,u);
}tarjan(1); cnt=0;
for(int i=1;i<=n;i++)if(!from[i])dfs(i,++cnt);
for(int i=1;i<=m;i++){
if(from[e[i][0]]!=from[e[i][1]]){
d[from[e[i][0]]]++;
d[from[e[i][1]]]++;
}
}int res=0;
//for(int i=1;i<=n;i++)printf("%d %d\n",from[i],d[i]);
for(int i=1;i<=n;i++)if(d[i]==1)res++;
printf("%d\n",(res+1)/2);
}return 0;
}