题目来源:洛谷

题目描述

监狱有连续编号为 1…N 的 N 个房间,每个房间关押一个犯人,有 M 种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入输出格式

输入格式:

输入两个整数 M,N

输出格式:

可能越狱的状态数,模 100003取余

输入输出样例

输入样例#1:

2 3
输出样例#1:

6

说明

6种状态为(000)(001)(011)(100)(110)(111)

1≤M≤10^8
1≤N≤10^12

解析:

这道题需要一些组合数学基础,没学过的出门右转。

我们根据稍微的组合数学基础容易知道,按照题意,总共有m^n 种犯人的组合。

如果我们要从正面突破这道题比较复杂,不如我们逆向思维想一下,是不是可以求出不会发生越狱的状态(当然是因为它好算),再用可能组合总数减去它得到答案?

首先,我们知道之前的m^n是由这样一个情形推导出来的:

由于每个牢房可以有m种宗教状态,方法总数就是m^n:

123...n
mmm...m

而我们知道,如果相邻的两个犯人的宗教相同,就会发生越狱,所以如果相邻两个犯人的宗教不同,也就是除了某一个犯人,其它任意相邻的两个犯人都只能信仰m-1种宗教(那个特殊的犯人占了一种),否则就会发生越狱。

所以不会越狱的方案总数就是m*(m-1)^(n-1)。

123...n
mm-1m-1...m-1

参考代码:

注意这里有一个魔幻的取模。

 #include<cstdio>
#include<iostream>
#include<cmath>
#define mod 100003
#define ll long long
using namespace std;
inline ll read()
{
ll f=,x=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
inline ll power(ll a,ll b,int p)
{
ll ans=%p;
for(;b;b>>=){
if(b&) ans=(ll)ans*a%p;
a=(ll)a*a%p;
}
return ans;
}
int main()
{
ll n,m;
m=read(),n=read();
ll ans=(power(m,n,mod)%mod-m*power(m-,n-,mod)%mod)%mod;
printf("%lld",(ans%mod+*mod)%mod);
return ;
}
05-11 21:54