马尔可夫模型与隐马尔可夫模型

作者:白宁超

2016年7月11日15:31:11

目录


【自然语言处理:马尔可夫模型(一)】:初识马尔可夫和马尔可夫链

【自然语言处理:马尔可夫模型(二)】:马尔可夫模型与隐马尔可夫模型

【自然语言处理:马尔可夫模型(三)】:向前算法解决隐马尔可夫模型似然度问题

【自然语言处理:马尔可夫模型(四)】:维特比算法解决隐马尔可夫模型解码问题(中文句法标注)

【自然语言处理:马尔可夫模型(五)】:向前向后算法解决隐马尔可夫模型机器学习问题

马尔可夫个人简介


安德烈·马尔可夫,俄罗斯人,物理-数学博士,圣彼得堡科学院院士,彼得堡数学学派的代表人物,以数论和概率论方面的工作著称,他的主要著作有《概率演算》等。1878年,荣获金质奖章,1905年被授予功勋教授称号。马尔可夫是彼得堡数学学派的代表人物。以数论和概率论方面的工作著称。他的主要著作有《概率演算》等。在数论方面,他研究了连分数和二次不定式理论 ,解决了许多难题 。在概率论中,他发展了矩阵法,扩大了大数律和中心极限定理的应用范围。马尔可夫最重要的工作是在1906~1912年间,提出并研究了一种能用数学分析方法研究自然过程的一般图式——马尔可夫链。同时开创了对一种无后效性的随机过程——马尔可夫过程的研究。马尔可夫经多次观察试验发现,一个系统的状态转换过程中第n次转换获得的状态常取决于前一次(第(n-1)次)试验的结果。马尔可夫进行深入研究后指出:对于一个系统,由一个状态转至另一个状态的转换过程中,存在着转移概率,并且这种转移概率可以依据其紧接的前一种状态推算出来,与该系统的原始状态和此次转移前的马尔可夫过程无关。马尔可夫链理论与方法在现代已经被广泛应用于自然科学、工程技术和公用事业中。

1  引言


当需要计算现实世界上可以直接观察到的时间序列的概率时,(如上面天气事件),马尔可夫链很有用。但是,当我们处理的事件是现实世界不能观察到的,而是隐含在观察背后,诸如词类标注(根据具体的一个个的词,我们实现看到的词的序列去标注出正确的词类,此事词类的标注是隐藏的)、语音识别(声学事件下,推断出隐藏在其背后的单词)等。类似这样的事件马尔可夫链是不能直接解决的,此处隐马尔可夫模型便派到用场。

隐马尔科夫模型:由被观察到的事件(如:此类标记时我们输入中看到的词序列),又涉及到隐藏事件(对词的标注),这些隐藏事件在概率模型中被我们认为是引导因素。

2 隐马尔可夫模型


2.1 爱依斯讷(Jason Eisner)对隐马尔可夫模型的描述

隐马尔可夫模型在现实问题中应用:

(1)具有初始状态和终结状态的隐马尔科夫链描述如下:

【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)-LMLPHP

(2)没有初始状态和终结状态的隐马尔科夫链描述如下:

【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)-LMLPHP

(3)一阶隐马尔可夫的两个假设

【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)-LMLPHP

2.2 拉宾纳(Rabiner)对隐马尔可夫模型思想的三个问题

问题1(似然度问题):给一个HMM λ=(A,B) 和一个观察序列O,确定观察序列的似然度问题 P(O|λ) 。

问题2(解码问题):给定一个观察序列O和一个HMM λ=(A,B),找出最好的隐藏状态序列Q。

问题3(学习问题):给定一个观察序列O和一个HMM中的状态集合,自动学习HMM的参数A和B。

如上的冰淇淋事件是典型的问题1,似然度问题,对应向前算法解决。词类标注是典型问题2解码问题,对应维特比算法解决。问题3是机器学习问题,对应向前向后算法解决。此三个问题稍后篇章会一一介绍。

3 案例解析隐马尔可夫模型

下图描述小明吃冰淇淋的数量(观察值)与天气热冷情况(隐藏值H或C)之间的隐马尔可夫模型

【NLP】揭秘马尔可夫模型神秘面纱系列文章(二)-LMLPHP

其中hot1的转移概率是:

P(1|hot)=0.2    夏天某天天气热吃1根冰淇淋的概率

P(2|hot)=0.4    夏天某天天气热吃2根冰淇淋的概率

P(3|hot)=0.4    夏天某天天气热吃3根冰淇淋的概率

其中cold2的转移概率是:

P(1|hot)=0.5    夏天某天天气冷吃1根冰淇淋的概率

P(1|hot)=0.4    夏天某天天气冷吃2根冰淇淋的概率

P(1|hot)=0.1    夏天某天天气冷吃3根冰淇淋的概率

其中观察值(吃的数量):

O={1,2,3}

隐藏值(天气的状态):

S={H,C}

全连通HMM:任何两个状态之间的转移一个非零概率。

非全连通HMM:从左到右的单向序列,如对语音进程建模。

通过小明吃冰淇淋的观察值推断天气状态的问题,留着下节采用隐含马尔可夫模型解决。此处采用一个短小简明的例子,旨在让读者明白原理,后续会拿到现实应用中深入讲解。

4  参考文献


【1】统计自然语言处理基础  Christopher.Manning等 著    宛春法等 译

【2】自然语言处理简明教程  冯志伟 著

【3】数学之美  吴军 著

【4】Viterbi算法分析文章  王亚强

05-11 13:26