测量最常用的是使用问卷调查。信度分析主要就是分析问卷测量结果的稳定性,如果多次重复测量的结果都很接近,就可以认为测量的信度是高的。与信度相对应的概念是效度,效度是指测量值和真实值的接近程度。二者的区别是:信度只是描述测量工具的准确性,而效度描述测量工具的有效性,效度高信度一定高(有效一定准确),而信度高,效度不一定高(准确不一定有效)
基于信度分析而产生的测量理论分为两种,一种是真分数测量理论,另一种是概化理论真分数理论认为信度可以用以下公式表达:X=T+E,X为实测分数,T为真分数,E为随机误差。效度可以用X=V+I+E表达,V代表有效分数,I代表系统误差分数,显然信度将所有误差均归为随机误差,而效度则将随机误差进一步分解为系统误差,而将真分数也改称为有效分数。
信度可以用信度系数来表示,不同的分析目的具有不同的信度系数,根据关注的重点不同,可以分为内在信度和外在信度,常用的内在信度表示方法有克朗巴哈系数,折半信度;常用的外在信度表示方法有重测信度,评分者信度信度系数如果大于0.8是可以接受的,在0.7-0.8之间说明需要进行修改,小于0.7的话,则说明量表存在较大问题,需要重新设计了。
SPSS中的分析—度量—可靠性分析过程中包含了大部分的信度分析系数,但是由于某些信度分析可以使用相关系数来表示,因此相关分析过程也可以使用。
我们首先看一下最常用的过程
分析—度量—可靠性分析
这是一个有10道题的问卷,设计为9分量表,考察此问卷的信度
下面我们再来看一下评分者信度,我们模拟了5个评分者在10道问题上的评分,假设分值为有序分类变量