Description
小Q是个程序员。众所周知,程序员在写程序的时候经常需要草稿纸。小Q现在需要一张草稿纸用来画图,但是桌上
只有一张草稿纸,而且是一张被用过很多次的草稿纸。草稿纸可以看作一个二维平面,小Q甚至已经给它建立了直
角坐标系。以前每一次草稿使用过的区域,都可以近似的看作一个平面上的一个三角形,这个三角形区域的内部和
边界都不能再使用。当然了,以前的草稿也没有出现区域重叠的情况。小Q已经在草稿纸上画上了一些关键点,这
些关键点都在没使用过的区域。小Q想把这些关键点两两之间尽可能的用线段连接起来。连接两个关键点的线段有
可能会穿过已经用过的草稿区域,这样显然不允许。于是小Q就想知道,有多少对关键点可以被线段连接起来,而
且还不会穿过已经用过的区域。为了方便,小Q保证任意三个关键点不会共线。
Input
第一行包含两个整数V,T,表示草稿纸上的关键点数量和三角形区域数量。
接下来V行,每行两个整数x,y,表示一个关键点的坐标(x,y)。
接下来T行,每行六个整数x1,y1,x2,y2,x3,y3,表示一个三角形区域的三个顶点坐标分别是(x1,y1),(x2,y2),(x3,y
3)保证三角形的面积大于0。
V<=1000,T<=1000,0<=所有坐标<=10^8且为整数
Output
输出一行,一个整数,表示能够被线段连接起来的关键点有多少对。
对每个点以它为中心进行扫描线,处理在右方的点和三角形。
#include<bits/stdc++.h>
typedef long long i64;
typedef double ld;
int n,m;
int sgn(i64 x){return x<?-:x>;}
struct pos{
int x,y;
void R(){scanf("%d%d",&x,&y);}
i64 pw2(){return i64(x)*x+i64(y)*y;}
}ps[],ws[],trs[][],O=(pos){,},now;
pos operator-(const pos&a,const pos&b){return (pos){a.x-b.x,a.y-b.y};}
int operator*(const pos&a,const pos&b){return sgn(i64(a.x)*b.y-i64(a.y)*b.x);}
ld mul(const pos&a,const pos&b){return ld(a.x)*b.y-ld(a.y)*b.x;}
bool cmp(const pos&a,const pos&b){return a.x!=b.x?a.x<b.x:a.y<b.y;}
bool operator<(const pos&a,const pos&b){return a*b<;}
struct seg{
pos a[];
ld val()const{return mul(a[],a[])/mul(now,a[]-a[]);}
bool operator<(const seg&w)const{return val()<w.val();}
};
std::set<seg>st;
std::set<seg>::iterator its[];
struct Q{
pos a[];
int t,id;
bool operator<(const Q&w)const{
int x=a[t]*w.a[w.t];
return x?x<:t<w.t;
}
bool operator<(const pos&w){
int x=a[t]*w;
return x?x<:!t;
}
void cal(){
now=a[t];
if(cmp(now,O))now=(pos){,};
if(t)st.erase(its[id]);
else{
seg s=(seg){a[],a[]};
its[id]=st.insert(s).first;
}
}
}qs[];
bool cross(pos a,pos b1,pos b2){
pos ba=b2-a;
if((a*(b1-a))*(a*ba)>)return ;
pos b3=b1-b2;
return (b3*b2)*(b3*ba)<=;
}
int ans=,wp,qp,ip;
void scl(){
for(int i=,j=;i<wp;++i){
for(;j<qp&&qs[j]<ws[i];qs[j++].cal());
if(st.empty()||!cross(ws[i],st.begin()->a[],st.begin()->a[]))++ans;
}
}
void aq(pos a,pos b){
bool da=cmp(O,a),db=cmp(O,b);
++ip;
if(da)qs[qp++]=(Q){a,b,,ip};
else if(db)((Q){a,b,,ip}).cal();
if(db)qs[qp++]=(Q){a,b,,ip};
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;++i)ps[i].R();
std::sort(ps+,ps+n+,cmp);
for(int i=;i<=m;++i)for(int j=;j<;++j)trs[i][j].R();
for(int i=;i<=n;++i){
st.clear();
wp=,qp=,ip=;
for(int j=i+;j<=n;++j)ws[wp++]=ps[j]-ps[i];
std::sort(ws,ws+wp);
for(int j=;j<=m;++j){
pos tr[];
for(int t=;t<;++t)tr[t]=trs[j][t]-ps[i];
std::sort(tr,tr+);
aq(tr[],tr[]);
}
std::sort(qs,qs+qp);
scl();
}
printf("%d\n",ans);
return ;
}