from pyspark import SparkContext, SparkConf
import os
from pyspark.sql.session import SparkSession
from pyspark.sql import Row def CreateSparkContex():
sparkconf = SparkConf().setAppName("MYPRO").set("spark.ui.showConsoleProgress", "false")
sc = SparkContext(conf=sparkconf)
print("master:" + sc.master)
sc.setLogLevel("WARN")
Setpath(sc)
spark = SparkSession.builder.config(conf=sparkconf).getOrCreate()
return sc, spark def Setpath(sc):
global Path
if sc.master[:5] == "local":
Path = "file:/C:/spark/sparkworkspace"
else:
Path = "hdfs://test" if __name__ == "__main__":
print("Here we go!\n")
sc, spark = CreateSparkContex()
readcsvpath = os.path.join(Path, 'iris.csv')
dfcsv = spark.read.csv(readcsvpath, header=True,
schema=("`Sepal.Length` DOUBLE,`Sepal.Width` DOUBLE,`Petal.Length` DOUBLE,`Petal.Width` DOUBLE,`Species` string"))
#指定数据类型读取 dfcsv.show(3) dfcsv.registerTempTable('Iris')#创建并登陆临时表
spark.sql("select * from Iris limit 3").show()#使用sql语句查询
spark.sql("select Species,count(1) from Iris group by Species").show() df = dfcsv.alias('Iris1')#创建一个别名
df.select('Species', '`Sepal.Width`').show(4)#因表头有特殊字符需用反引号``转义
df.select(df.Species,df['`Sepal.Width`']).show(4)
dfcsv.select(df.Species).show(4)#原始名、别名的组合
df[df.Species, df['`Sepal.Width`']].show(4)
df[['Species']]#与pandas相同
df['Species']#注意这是一个字段名 #########增加字段
df[df['`Sepal.Length`'], df['`Sepal.Width`'], df['`Sepal.Length`'] - df['`Sepal.Width`']].show(4)
df[df['`Sepal.Length`'], df['`Sepal.Width`'],
(df['`Sepal.Length`'] - df['`Sepal.Width`']).alias('rua')].show(4)#重命名 #########筛选数据
df[df.Species == 'virginica'].show(4)#与pandas筛选一样
df[(df.Species == 'virginica') & (df['`Sepal.Width`']>1)].show(4)#多条件筛选
df.filter(df.Species == 'virginica').show(4)#也可以用fileter方法筛选
spark.sql("select * from Iris where Species='virginica'").show(4)#sql筛选 ##########多字段排序
spark.sql("select * from Iris order by `Sepal.Length` asc ").show(4)#升序
spark.sql("select * from Iris order by `Sepal.Length` desc ").show(4)#降序
spark.sql("select * from Iris order by `Sepal.Length` asc,`Sepal.Width` desc ").show(4)#升降序 df.select('`Sepal.Length`', '`Sepal.Width`').orderBy('`Sepal.Width`',ascending=0).show(4)#按降序
df.select('`Sepal.Length`', '`Sepal.Width`').orderBy('`Sepal.Width`').show(4) # 升序
df.select('`Sepal.Length`', '`Sepal.Width`').orderBy('`Sepal.Width`', ascending=1).show(4) # 按升序,默认的
df.select('`Sepal.Length`', '`Sepal.Width`').orderBy(df['`Sepal.Width`'].desc()).show(4) # 按降序 df.select('`Sepal.Length`', '`Sepal.Width`').orderBy(
['`Sepal.Length`','`Sepal.Width`'], ascending=[0,1]).show(4)#两个字段按先降序再升序
df.orderBy(df['`Sepal.Length`'].desc(),df['`Sepal.Width`']).show(4) ##########去重
spark.sql("select distinct Species from Iris").show()
spark.sql("select distinct Species,`Sepal.Width` from Iris").show() df.select('Species').distinct().show()
df.select('Species','`Sepal.Width`').distinct().show()
df.select('Species').drop_duplicates().show()#同上,与pandas用法相同
df.select('Species').dropDuplicates().show()#同上 ##########分组统计
spark.sql("select Species,count(1) from Iris group by Species").show()
df[['Species']].groupby('Species').count().show()
df.groupby(['Species']).agg({'`Sepal.Width`': 'sum'}).show()
df.groupby(['Species']).agg({'`Sepal.Width`': 'sum', '`Sepal.Length`': 'mean'}).show() #########联结数据
dic=[['virginica','A1'],['versicolor','A2'],['setosa','A3']]
rrd=sc.parallelize(dic)
df2=rrd.map(lambda p: Row(lei=p[0],al=p[1]))
df2frame=spark.createDataFrame(df2)
df2frame.show()
df2frame.registerTempTable('dictable')
spark.sql("select * from Iris u left join dictable z on u.Species=z.lei").show()
df.join(df2frame, df.Species == df2frame.lei, 'left_outer').show() sc.stop()
spark.stop()