题意:给定点A[0~n-1]和B[0],B[1],A[0]、A[1]映射到B[0]、B[1],求出其余点的映射B[2]~B[n-1]。
析:运用复数类,关键是用模板复数类,一直编译不过,我明明能编译过,交上就不过,只能写一个复数了。。。
代码如下:
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <string>
#include <algorithm>
#include <vector>
#include <map>
using namespace std ;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const int maxn = 10000 + 5;
template<class T>
class Complex
{
public:
Complex( ){real=0;imag=0;}
Complex(T r,T i){real=r;imag=i;}
Complex complex_add(Complex &c2);
Complex complex_minus(Complex &c2);
Complex complex_multiply(Complex &c2);
Complex complex_divide(Complex &c2);
T real1();
T imag1(); public:
friend istream &operator >>(istream &is, Complex<T> &p){
cin >> p.real >> p.imag;
return is;
} private:
T real;
T imag;
}; template<class T>
Complex<T> Complex<T>::complex_add(Complex<T> &c2)
{
Complex<T> c;
c.real=real+c2.real;
c.imag=imag+c2.imag;
return c;
} template <class T>
Complex<T> Complex<T>::complex_minus(Complex <T> &c2)
{
Complex <T> c;
c.real=real-c2.real;
c.imag=imag-c2.imag;
return c;
} template <class T>
Complex<T> Complex<T>::complex_multiply(Complex <T> &c2)
{
Complex <T> c;
c.real=real*c2.real-imag*c2.imag;
c.imag=imag*c2.real+real*c2.imag;
return c;
} template <class T>
Complex<T> Complex<T>::complex_divide(Complex <T> &c2)
{
Complex <T> c;
T d=c2.real*c2.real+c2.imag*c2.imag;
c.real=(real*c2.real+imag*c2.imag)/d;
c.imag=(imag*c2.real-real*c2.imag)/d;
return c;
} template <class T>
T Complex<T>::real1(){
return real;
} template <class T>
T Complex<T>::imag1(){
return imag;
} Complex<double> a[maxn], b[2], ans; int main(){
int T, n; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d", &n);
double x, y;
for(int i = 0; i < n; ++i){
cin >> a[i]; }
for(int i = 0; i < 2; ++i){
cin >> b[i];
} Complex<double> tmp = (b[1].complex_minus(b[0]));
Complex<double> tmp1 = (a[1].complex_minus(a[0]));
tmp = tmp.complex_divide(tmp1);
printf("Case %d:\n", kase);
for(int i = 0; i < n; ++i){
ans = (a[i].complex_minus(a[0]));
ans = ans.complex_multiply(tmp);
ans = ans.complex_add(b[0]);
printf("%.2lf %.2lf\n", ans.real1(), ans.imag1());
}
}
return 0;
}
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <string>
#include <algorithm>
#include <vector>
#include <map>
#include <complex>
using namespace std ;
typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const int maxn = 10000 + 5;
complex<double> a[maxn], b[2], ans; int main(){
int T, n; cin >> T;
for(int kase = 1; kase <= T; ++kase){
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%lf %lf", &a[i].real(), &a[i].imag());
scanf("%lf %lf %lf %lf", &b[0].real(), &b[0].imag(), &b[1].real(), &b[1].imag());
complex<double> tmp = (b[1]-b[0])/(a[1]-a[0]);
printf("Case %d:\n", kase);
for(int i = 0; i < n; ++i){
ans = (a[i]-a[0]) * tmp + b[0];
printf("%.2lf %.2lf\n", ans.real(), ans.imag());
}
}
return 0;
}