【分析】
用的悬线法,具体可以看我以前的博客:http://www.cnblogs.com/Konjakmoyu/p/5787633.html
先把行列和为偶数的反掉颜色,那么就是求最大的黑色矩阵和最大的白色矩阵。这题障碍点较多,图的规模较小,用悬线法即可nm完成。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2010 int mymin(int x,int y) {return x<y?x:y;}
int mymax(int x,int y) {return x>y?x:y;} int a[Maxn][Maxn];
int a1=,a2=,rt[Maxn][Maxn],lt[Maxn][Maxn];
int up[Maxn][Maxn];
int n,m; void get_ans()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(j!=&&a[i][j-]==) lt[i][j]=lt[i][j-];
else lt[i][j]=j;
}
for(int j=m;j>=;j--)
{
if(j!=m&&a[i][j+]==) rt[i][j]=rt[i][j+];
else rt[i][j]=j;
}
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) if(a[i][j]==)
{
if(i!=&&a[i-][j]==)
up[i][j]=up[i-][j],lt[i][j]=mymax(lt[i][j],lt[i-][j]),
rt[i][j]=mymin(rt[i][j],rt[i-][j]);
else up[i][j]=i;
a1=mymax(a1,(i-up[i][j]+)*(rt[i][j]-lt[i][j]+));
a2=mymax(a2,mymin(i-up[i][j]+,rt[i][j]-lt[i][j]+));
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%d",&a[i][j]);
if((i+j)%==) a[i][j]=-a[i][j];
}
get_ans();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
a[i][j]=-a[i][j];
}
get_ans();
printf("%d\n%d\n",a2*a2,a1);
return ;
}
2017-02-24 18:29:19