声明:本文最初发表于赖勇浩(恋花蝶)的博客http://blog.csdn.net/lanphaday
先将两张图片转化为直方图,图像的相似度计算就转化为直方图的距离计算了,本文依照如下公式进行直方图相似度的定量度量:
Sim(G,S)=
其中G,S为直方图,N 为颜色空间样点数
转换为相应的 Python 代码如下:
#!/usr/bin/env python
# coding=utf-8 import Image def make_regalur_image(img,size=(256,256)):
return img.resize(size).convert('RGB') def split_image(img,part_size=(64,64)):
w,h = img.size
pw,ph = part_size assert w%pw == h%ph==0 return [img.crop((i,j,i+pw,j+ph)).copy() for i in xrange(0,w,pw) for j in xrange(0,h,ph)] def hist_similar(lh,rh):
assert len(lh)==len(rh)
return sum(1-(0 if l==r else float(abs(l-r))/max(l,r))for l,r in zip(lh,rh))/len(lh) def calc_similar(li,ri):
# return hist_similar(li.histogram(),ri.histogram())
return sum(hist_similar(l.histogram(),r.histogram()) for l,r in zip(split_image(li),split_image(ri)))/16.0 def calc_similar_by_path(lf,rf):
li,ri = make_regalur_image(Image.open(lf)),make_regalur_image(Image.open(rf))
return calc_similar(li,ri) def make_doc_data(lf,rf):
li = make_regalur_image(Image.open(lf))
ri = make_regalur_image(Image.open(rf))
li.save(lf+'_regalur.png')
ri.save(rf+'_regalur.png') fd = open('stat.csv','w')
fd.write('\n'.join(l+','+r for l,r in zip(map(str,li.histogram()),map(str,ri.histogram()))))
fd.close() import ImageDraw
li = li.convert('RGB')
draw = ImageDraw.Draw(li)
for i in xrange(0,256,64):
draw.line((0,i,256,i),fill ='#F00')
draw.line((i,0,i,256),fill='#F00')
li.save(lf+'_lines.png') if __name__=='__main__':
path = r'test/TEST%d/%d.JPG'
for i in xrange(1,7):
print 'test_case_%d: %.3f%%'%(i,calc_similar_by_path('test/TEST%d/%d.JPG'%(i,1),'test/TEST%d/%d.JPG'%(i,2))*100) make_doc_data('test/TEST4/1.JPG','test/TEST4/2.JPG')
参考: