先是处理所有的正方形 从边长为1开始 将其边存好 满边存好
然后不断扫描正方形 并且进行拆除 直到拆完或者 步数小于等于9(启发方程 因为n小于等于5 九次足以将所有的拆完)
代码实施有很多细节 lrj的代码非常巧妙 !
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
using namespace std; const int maxs = ; // number of squares: 25+16+9+4+1=55
const int maxm = ; // number of matches: 2*5*(5+1)=60 int n, exists[maxm]; // matches
int s, size[maxs], fullsize[maxs], contains[maxs][maxm]; // squares
int best; inline int row_match(int x, int y) {
return (*n+)*x+y;
} inline int col_match(int x, int y) {
return (*n+)*x+n+y;
} // number of matches in a full n*n grid
inline int match_count(int n) {
return *n*(n+);
} void init() {
int m, v;
scanf("%d%d", &n, &m);
for(int i = ; i < match_count(n); ++i) exists[i] = ;
while(m--) {
scanf("%d", &v);
exists[v-] = ;
} // collect full squares
s = ;
memset(contains, , sizeof(contains));
for(int i = ; i <= n; i++) // side length
for(int x = ; x <= n-i; x++)
for(int y = ; y <= n-i; y++) {
size[s] = ;
fullsize[s] = *i; // number of matches in a complete square
for(int j = ; j < i; j++) {
int a = row_match(x, y+j); // up
int b = row_match(x+i, y+j); // down
int c = col_match(x+j, y); // left
int d = col_match(x+j, y+i); // right
contains[s][a] = ;
contains[s][b] = ;
contains[s][c] = ;
contains[s][d] = ;
size[s] += exists[a] + exists[b] + exists[c] + exists[d]; // number of matches now
}
++s;
}
} int find_square() {
for(int i = ; i < s; i++)
if(size[i] == fullsize[i]) return i;
return -;
} void dfs(int dep) {
if(dep >= best) return; int k = find_square();
if(k == -) {
best = dep;
return;
} // remove a match in that square
for(int i = ; i < match_count(n); i++)
if(contains[k][i]) {
for(int j = ; j < s; j++)
if(contains[j][i]) size[j]--;
dfs(dep + );
for(int j = ; j < s; j++) //dfs切记改变了要变回来
if(contains[j][i]) size[j]++;
}
} int main() {
int T;
scanf("%d", &T);
while(T--) {
init();
best = n*n;
dfs();
printf("%d\n", best);
}
return ;
}