题目描述

6392. 【NOIP2019模拟2019.10.26】僵尸-LMLPHP

6392. 【NOIP2019模拟2019.10.26】僵尸-LMLPHP

题解

吼题但题解怎么这么迷

考虑一种和题解不同的做法(理解)

先把僵尸离散化,h相同的钦(ying)点一个大小

(可以发现这样每种情况只会被算正好一次)

计算完全被占领的方案,然后1-方案/概率

由于大小确定了,所以最后会被分成若干不相连的块,且块中至少有一只僵尸,大的僵尸能占领小的僵尸的块,所以相邻两块之间一定会断开

那么一种占领的方案对应的是一类高度情况,考虑所有的占领方案即可求出所有的高度情况

定义一个块的编号为所占领的最大僵尸的编号

设f[i]x表示以i为根的子树中点i所在块的编号为x

那么对于f[j]y转移如下:

①x=y

f[j][y]*(僵尸x经过i--j的方案数)-->f[i][x]

那么x和y在同一个块中,因为一个块只有一只僵尸,所以块内必须要连通

②x<y

f[j][y]*(僵尸y不经过i--j的方案数)-->f[i][x]

x和y不在同一个块中,所以x和y不能连通,即较大的僵尸(y)不能走到另一个点(i)

并且要保证j中存在y,不存在x,原因见下文

③x>y

f[j][y]*(僵尸x不经过i--j的方案数)-->f[i][x]

原因&范围同上

初值为f[i][x]=[x>=i处最大的僵尸能力值](x>0)

对于②③的限制:

因为要保证以某个点i为最浅点的块内刚好存在僵尸x

在i与fa[i]断开时保证了x在i的子树中,i所在块的叶子与块中叶子的儿子断开保证了x不在块外,所以块中必定存在x

时间复杂度O(n2)

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <bitset>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define add(a,b) a=((a)+(b))%998244353
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define mod 998244353
#define Mod 998244351
using namespace std; struct type{
int x,id;
} b[2001];
int a[4002][2];
int c[2001][2001];
int C[2001];
int ls[2001];
int L[2001];
int R[2001];
int h[2001];
int H[2001];
long long f[2001][2001];
long long s1[2002];
long long s2[2002];
bitset<2001> bz[2001];
int T,N,n,m,i,j,k,l,len;
long long ans,s; bool cmp(type a,type b)
{
return a.x<b.x;
} void New(int x,int y)
{
++len;
a[len][0]=y;
a[len][1]=ls[x];
ls[x]=len;
} long long qpower(long long a,int b)
{
long long ans=1; while (b)
{
if (b&1)
ans=ans*a%mod; a=a*a%mod;
b>>=1;
} return ans;
} void Dfs(int Fa,int t)
{
int i; if (h[t]) bz[t][h[t]]=1; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
Dfs(t,a[i][0]);
bz[t]|=bz[a[i][0]];
}
} void dfs(int Fa,int t)
{
int i,j,k,l,id;
long long x; fo(i,max(1,h[t]),N) f[t][i]=1; for (i=ls[t]; i; i=a[i][1])
if (a[i][0]!=Fa)
{
id=i/2;
dfs(t,a[i][0]); fo(k,1,N)
{
s1[k]=s1[k-1]; if (bz[a[i][0]][k])
add(s1[k],f[a[i][0]][k]);
}
s2[N+1]=0;
fd(k,N,1)
{
s2[k]=s2[k+1]; if (bz[a[i][0]][k])
add(s2[k],f[a[i][0]][k]*max(R[id]-max(H[k],L[id])+1,0)%mod);
} fo(j,1,N)
{
if (!bz[a[i][0]][j])
f[t][j]=f[t][j]*(s2[j+1]+s1[j-1]*max(R[id]-max(H[j],L[id])+1,0)%mod+f[a[i][0]][j]*max(min(H[j]-1,R[id])-L[id]+1,0)%mod)%mod;
else
f[t][j]=f[t][j]*(f[a[i][0]][j]*max(min(H[j]-1,R[id])-L[id]+1,0)%mod)%mod; // O(n^3)
// fo(k,1,N)
// if (f[a[i][0]][k])
// {
// if (j<k)
// x=max(R[id]-max(H[k],L[id])+1,0);
// if (j==k)
// x=max(min(H[k]-1,R[id])-L[id]+1,0);
// if (j>k)
// x=max(R[id]-max(H[j],L[id])+1,0);
//
// if (j==k || bz[a[i][0]][k] && !bz[a[i][0]][j])
// add(F[j],f[t][j]*f[a[i][0]][k]%mod*x);
// }
}
}
} int main()
{
freopen("zombie.in","r",stdin);
freopen("zombie.out","w",stdout); scanf("%d",&T);
for (;T;--T)
{
memset(bz,0,sizeof(bz));
memset(ls,0,sizeof(ls));
memset(h,0,sizeof(h));
memset(H,0,sizeof(H));
memset(f,0,sizeof(f));
memset(C,0,sizeof(C));
len=1; scanf("%d%d",&n,&m);
fo(i,1,n-1)
{
scanf("%d%d%d%d",&j,&k,&L[i],&R[i]); New(j,k);
New(k,j);
}
fo(i,1,m)
{
scanf("%d%d",&j,&k);
h[j]=max(h[j],k);
} N=0;
fo(i,1,n)
if (h[i])
b[++N]={h[i],i}; sort(b+1,b+N+1,cmp); fo(i,1,N)
{
H[i]=b[i].x;
h[b[i].id]=i;
} Dfs(0,1);
dfs(0,1); ans=0;
fo(i,1,N)
add(ans,f[1][i]); s=1;
fo(i,1,n-1)
s=s*(R[i]-L[i]+1)%mod;
ans=ans*qpower(s,Mod)%mod; printf("%lld\n",((1-ans)%mod+mod)%mod);
} fclose(stdin);
fclose(stdout); return 0;
}
05-21 02:14