【原创】Liu_LongPo 转载请注明出处 
【CSDN】http://blog.csdn.net/llp1992

PCA算法前面在前面的博客中已经有介绍,这里简单在描述一下,更详细的PCA算法请参考我的博客: 机器学习实战ByMatlab(二)PCA算法

PCA 的主要计算步骤

PCA 的另外一种解释是:xrotxrot 是一个 nn 维向量,其中前 kk 个成分可能比较大,而后几个成分可能比较小,PCA 算法做的其实就是丢弃 xrotxrot 后面 n−kn−k 个较小的成分,即将这些成分的值近似为0,然后仅用这前 kk 个成分来定义 kk 维向量 x′x′

还原近似数据

当我们得到降维后的数据 x′x′ , 我们想还原原来的数据,只需要左乘 u 即可,即 x=Uxrotx=Uxrot

选择主成分的个数

关于PCA中主成分的个数 kk 的选择:

我们通常考虑的是不同 kk 值可以保留的方差百分比,具体来说,如果 k=nk=n ,那么我们得到的是对数据的完美近似,也就是保留了100%的方差,即原始数据的所有变化都被保留下来;相反,如果 k=0k=0 ,那等于是使用零向量来逼近输入数据,也就是只有0%的方差被保留下来。

一般而言,设 λ1,λ2,...,λnλ1,λ2,...,λn 表示 ΣΣ 的特征值(由大到小排序,在matlab中可由 svd 函数得到),使得 λjλj 为对应的特征向量 ujuj 的特征值,那么如果我们保留前 kk 个成分,则保留的方差百分比可计算为:

 
∑kj=1λj∑nj=1λj∑j=1kλj∑j=1nλj

以处理图像数据为例,一个惯常的经验法则是选择 kk 以保留99%的方差,换句话说,我们选取满足以下条件的最小 kk值:

 
∑kj=1λj∑nj=1λj≥99%∑j=1kλj∑j=1nλj≥99%

对图像数据应用PCA算法

假设我们的特征为 x1,x2,...,xnx1,x2,...,xn ,对于非图像数据的处理,我们一般要计算每个特征 xjxj 的均值和方差,然后将其取值范围规整化为零均值和单位方差。不过对于大多数自然图像来说,由于其自身的平稳性,图像任一部分的统计性质都应该和其它部分相同,因此我们不用进行方差归一化。

所以对图像进行处理时,步骤如下:

白化

白化其实跟PCA算法还是挺相似的。举例来说,假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的。白化的目的就是降低输入的冗余性;更正式的说,我们希望通过白化过程使得学习算法的输入具有如下性质:

在PCA算法中,我们对数据进行降旋转 x(i)rot=UTx(i)xrot(i)=UTx(i) 时,已经消除了输入特征 x(i)x(i) 之间的相关性,举个例子:假如我们的二维数据图形化如下:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

显然这是一个二维数据分布,其中横轴 x1x1 跟竖轴 x2x2 之前呈现正相关关系,即 x2x2 随着 x1x1 的增大而增大,然后我们将其投影到特征向量上 x(i)rot=UTx(i)xrot(i)=UTx(i) ,得到如下图:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

此时 x2x2 已经不随着 x1x1 的增大而增大了,也就是说 x1x1 与 x2x2 消除了相关性。

特征单位方差处理

为了使每个输入特征具有单位方差,我们可以直接使用 1λi√1λi 作为缩放因子来缩放每个特征 xrot,ixrot,i ,具体地,我们定义白化后的数据如下:

 
xPCAwhite,i=xrot,iλi−−√xPCAwhite,i=xrot,iλi

此时的 xPCAwhite,ixPCAwhite,i 是数据经过PCA白化后的版本, 其不同的特征之间不相关并且具有单位方差。

ZCA 白化

假如 RR 是任意正交矩阵,即满足 RRT=RTR=IRRT=RTR=I ,那么 RxPCAwhiteRxPCAwhite仍然具有单位协方差。在ZCA白化中,令 R=UR=U。我们定义ZCA白化的结果为:

 
xZCAwhite=UxPCAwhitexZCAwhite=UxPCAwhite

正则化

实践中需要实现PCA白化或ZCA白化时,有时一些特征值 λiλi在数值上接近于0,这样在缩放步骤时我们除以 λ−−√iλi将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,我们使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数 ϵϵ :

 
xPCAwhite,i=xrot,iλi+ϵ−−−−−√xPCAwhite,i=xrot,iλi+ϵ

当 xx 在区间[-1,1]上时, 一般取值为 ϵ≈10−5ϵ≈10−5 
对图像来说, 这里加上 ϵϵ,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。

matlab 实例

1.图像加载 12x12 的patch,共10000个,转换为 144x10000的矩阵,即数据是144维

x = sampleIMAGESRAW();
  • 1

随机显示200个图像块,如下图:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

2.零均值化

meanVal = mean(x);
x = bsxfun(@minus,x,meanVal);
  • 1
  • 2

此时 xx 为零均值数据

3.求协方差矩阵,并对协方差矩阵进行奇异值分解,再对数据进行特征向量投影

xRot = zeros(size(x));
[u,d] = svd(x*x'/size(x,2));
xRot = u' * x;
  • 1
  • 2
  • 3

4.PCA 检测,计算协方差矩阵

covar = zeros(size(x, 1));
covar = xRot*xRot'/size(xRot,2);
  • 1
  • 2

此时的协方差矩阵为144x144的矩阵,显示为图像如下:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

对角线为数据的自相关,也就是方差,值最大,所以颜色最亮,两边为协方差,值比较小,故颜色较暗,这里为蓝色。

5. 寻找能够保留90%方差的最小 kk 值

k = 0;
dVal = diag(d); % 列向量
sumDVal = sum(dVal);
kP = 0;
while kP<0.9
k = k+1;
kP = sum(dVal(1:k)) / sumDVal;
end
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

此时 kk 为43,当设置为保留 99% 的方差时,kk 为116.

6. PCA降维

xHat = zeros(size(x));
xHat = u(:,1:k) * xRot(1:k,:);
  • 1
  • 2

将 144维的数据降维到43维,并用43维数据还原图像如下:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

7. PCA白化与规则化

epsilon = 0.1;
xPCAWhite = zeros(size(x));
xPCAWhite = bsxfun(@rdivide,xRot,sqrt((dVal+epsilon)));
  • 1
  • 2
  • 3

8. 检测PCA白化是否正确,计算协方差矩阵并显示

covar = xPCAWhite * xPCAWhite' / size(xPCAWhite,2);
  • 1

白化后的协方差矩阵图像如下:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

如果没有进行规则化,也就是我们将 ϵϵ 设置为0,此时白化后的协方差矩阵如下图:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP

9.ZCA白化

xZCAWhite = zeros(size(x));
xZCAWhite = u*xPCAWhite;
  • 1
  • 2

ZCA白化后图像如下:

DeepLearning (三) 预处理:主成分分析与白化-LMLPHP
05-11 13:36