思路:我们考虑两个绿点之间的红点和蓝点, 首先把这些红点和蓝点接到绿点上面绝对不会超过绿点距离的两倍。
然后我们先把两个绿点连上, 再把绿点经过蓝点到绿点的线连上, 绿点经过红点到绿点的线连上, 这时距离为3倍的绿点间距离,
然后我们可以在第二条路径和第三条路径上断开一段最长的, 和两个的绿点距离取个最小值,就是这段的贡献。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long
using namespace std; const int N = 3e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-; int n, p, dis[N];
char s[];
vector<int> G, R, B; int main() {
scanf("%d", &n);
for(int i = ; i <= n; i++) {
scanf("%d%s", &p, s);
if(s[] == 'G') G.push_back(p);
else if(s[] == 'R') R.push_back(p);
else B.push_back(p);
}
LL ans = ;
if(SZ(G)) {
int S = G[], T = G[SZ(G)-];
if(SZ(R) && R[] < S) ans += abs(R[] - S);
if(SZ(R) && R[SZ(R)-] > T) ans += abs(R[SZ(R)-] - T);
if(SZ(B) && B[] < S) ans += abs(B[] - S);
if(SZ(B) && B[SZ(B)-] > T) ans += abs(B[SZ(B)-] - T);
for(int i = ; i + < SZ(G); i++) {
LL l = G[i], r = G[i + ];
LL ret = , tmp1 = INF, tmp2 = INF;
int x = lower_bound(R.begin(), R.end(), l) - R.begin();
int y = lower_bound(R.begin(), R.end(), r) - R.begin() - ;
if(x <= y) {
tmp1 = min(tmp1, r-l-(R[x]-l));
tmp1 = min(tmp1, r-l-(r-R[y]));
for(int j = x; j < y; j++) tmp1 = min(tmp1, r-l-(R[j+]-R[j]));
} else tmp1 = ;
x = lower_bound(B.begin(), B.end(), l) - B.begin();
y = lower_bound(B.begin(), B.end(), r) - B.begin() - ;
if(x <= y) {
tmp2 = min(tmp2, r-l-(B[x]-l));
tmp2 = min(tmp2, r-l-(r-B[y]));
for(int j = x; j < y; j++) tmp2 = min(tmp2, r-l-(B[j+]-B[j]));
} else tmp2 = ;
ans += min( * (r - l), tmp1 + tmp2 + r - l);
}
} else {
if(SZ(R)) ans += R[SZ(R)-] - R[];
if(SZ(B)) ans += B[SZ(B)-] - B[];
}
printf("%lld\n", ans);
return ;
} /*
*/