对于一个给定的生成数列
R[ 0 ] 已知, (R[ i - 1 ] * a + b) % p = R[ i ] (p 是 质数), 求最小的 x 使得 R[ x ] = t
我们假设存在这样一个数列 S[ i ] = R[ i ] - v, 并且S[ i - 1] * a = S[ i ], 那么将S[ i ] = R[ i ] - v带入可得
v = b / (1-a) 那么我们能得到 R[ i ] = (R[ 0 ] - v) * a ^ n + v, 然后就是解一个高次剩余方程,
注意 a == 1 和 R[ 0 ] == v的情况需要特殊考虑。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e4 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, x, L, R, a, b, p, T, y; struct hashTable {
int head[N+], tot;
struct node {
int val, id, nx;
} a[N+];
void init() {
memset(head, -, sizeof(head));
tot = ;
}
void Insert(int val, int id) {
int p = val % N;
a[tot].val = val;
a[tot].id = id;
a[tot].nx = head[p];
head[p] = tot++;
}
int Find(int val) {
int p = val % N;
for(int i = head[p]; ~i; i = a[i].nx)
if(a[i].val == val) return a[i].id;
return -;
}
} mp; int fastPow(int a, int b) {
int ans = ;
while(b) {
if(b & ) ans = 1ll*ans*a%p;
a = 1ll*a*a%p; b >>= ;
}
return ans;
} int BSGS(int a,int b,int p) {
if(b == ) return ;
if(a == b) return ;
if(!b) return !a ? : -;
mp.init();
int m = ceil(sqrt(p)), x = , y, z;
for(int i = ; i <= m; i++) {
x = 1ll * x * a % p;
if(mp.Find(x) == -) mp.Insert(x, i);
}
x = , y = fastPow(a, p-m-);
for(int i = ; i < m; ++i) {
z = mp.Find(1ll*x*b%p);
if(~z) return i * m + z;
x = 1ll * x * y % p;
}
return -;
} int main() {
// freopen("hawawshi.in", "r", stdin);
scanf("%d", &T);
while(T--) {
scanf("%d%d%d%d%d%d%d", &n, &x, &L, &R, &a, &b, &p);
int q = , r = R-L+;
if(a == ) {
for(int R0 = L; R0 <= R; R0++) {
int pos = 1ll*(x-R0+p)%p*fastPow(b, p-)%p;
if(pos < n) q++;
}
} else {
int v = 1ll * b * fastPow(-a+p, p-) % p;
for(int R0 = L; R0 <= R; R0++) {
if(R0 == v) {
if(R0 == x) q++;
} else {
int pos = BSGS(a, 1ll*(x-v+p)%p*fastPow((R0-v+p)%p, p-)%p, p);
if(~pos && pos < n) q++;
}
}
}
int gcd = __gcd(q, r);
printf("%d/%d\n", q/gcd, r/gcd);
}
return ;
} /*
*/