问题描述
  为了增加公司收入,F公司新开设了物流业务。由于F公司在业界的良好口碑,物流业务一开通即受到了消费者的欢迎,物流业务马上遍及了城市的每条街道。然而,F公司现在只安排了小明一个人负责所有街道的服务。
  任务虽然繁重,但是小明有足够的信心,他拿到了城市的地图,准备研究最好的方案。城市中有n个交叉路口,m条街道连接在这些交叉路口之间,每条街道的
首尾都正好连接着一个交叉路口。除开街道的首尾端点,街道不会在其他位置与其他街道相交。每个交叉路口都至少连接着一条街道,有的交叉路口可能只连接着一
条或两条街道。
  小明希望设计一个方案,从编号为1的交叉路口出发,每次必须沿街道去往街道另一端的路口,再从新的路口出发去往下一个路口,直到所有的街道都经过了正好一次。
输入格式
  输入的第一行包含两个整数n, m,表示交叉路口的数量和街道的数量,交叉路口从1到n标号。
  接下来m行,每行两个整数a, b,表示和标号为a的交叉路口和标号为b的交叉路口之间有一条街道,街道是双向的,小明可以从任意一端走向另一端。两个路口之间最多有一条街道。
输出格式
  如果小明可以经过每条街道正好一次,则输出一行包含m+1个整数p, p, p, ..., p,表示小明经过的路口的顺序,相邻两个整数之间用一个空格分隔。如果有多种方案满足条件,则输出字典序最小的一种方案,即首先保证p最小,p最小的前提下再保证p最小,依此类推。
  如果不存在方案使得小明经过每条街道正好一次,则输出一个整数-1。
样例输入
4 5
1 2
1 3
1 4
2 4
3 4
样例输出
1 2 4 1 3 4
样例说明
  城市的地图和小明的路径如下图所示。
CCF 201512-4送货 (并查集+DFS,欧拉路)-LMLPHP
样例输入
4 6
1 2
1 3
1 4
2 4
3 4
2 3
样例输出
-1
样例说明
  城市的地图如下图所示,不存在满足条件的路径。
CCF 201512-4送货 (并查集+DFS,欧拉路)-LMLPHP
评测用例规模与约定
  前30%的评测用例满足:1 ≤ n ≤ 10, n-1 ≤ m ≤ 20。
  前50%的评测用例满足:1 ≤ n ≤ 100, n-1 ≤ m ≤ 10000。
  所有评测用例满足:1 ≤ n ≤ 10000,n-1 ≤ m ≤ 100000。
析:根据题意就能看出来是欧拉路,关于欧拉路,就相当于一笔画,从一个结点出发(这个题是确定了,从1出发),然后把所有的边都走一遍,那么首先,
如果结点有多于2个度为奇数,那么一定不可能,如果有两个奇度结点,那么必须有一个是1,否则就不行了,至于连通性可以用并查集,或者也可以用DFS来判,
最后就是打印路径,这里可以用stack来储存答案,然后DFS去搜,要想字典序小,首先是把所有的点按大小排序,然后在搜的时候优先选择小的,这样字典序就最小。
 
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e4 + 5;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
vector<int> G[maxn];
int p[maxn], in[maxn];
int Find(int x) { return x == p[x] ? x : p[x] = Find(p[x]); }
stack<int> ans;
bool vis[maxn][maxn]; void dfs(int u){
for(int i = 0; i < G[u].size(); ++i){
int v = G[u][i];
if(!vis[u][v]){
vis[u][v] = vis[v][u] = 1;
dfs(v);
ans.push(v);
}
}
} bool judge(){
int x = Find(1);
int cnt = 0;
for(int i = 1; i <= n; ++i){
if(x != Find(i)) return false;
if(in[i] & 1) ++cnt;
if(cnt > 2) return false;
sort(G[i].begin(), G[i].end());
} if(cnt == 2 && in[1] % 2 == 0) return false;
return true;
} void print(){
printf("1");
while(!ans.empty()){
printf(" %d", ans.top());
ans.pop();
}
printf("\n");
} int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) G[i].clear(), p[i] = i;
memset(in, 0, sizeof in);
memset(vis, false, sizeof vis);
int u, v;
for(int i = 0; i < m; ++i){
scanf("%d %d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
int x = Find(u);
int y = Find(v);
if(x != y) p[y] = x;
++in[u]; ++in[v];
} if(!judge()){ printf("-1\n"); continue; }
dfs(1);
print();
}
return 0;
}
05-11 22:48