终于把区间操作的Splay搞明白了……
Splay的大致框架是这样的:
【代码中的Zig-Zig和Zig-Zag操作其实是可以优化的,实际只需要3次passDown和3次update】
template <class T> struct SplayNode { typedef SplayNode<T> Node; Node* lch; Node* rch; Node* parent; T val; SplayNode(const T& _val,Node* _parent): lch(),rch(),parent(_parent),val(_val) {} void passDown() {} void update() {} void lRotate() { if(parent->parent) { if(parent==parent->parent->lch) parent->parent->lch=this; else parent->parent->rch=this; } parent->passDown(); passDown(); parent->rch=this->lch; if(lch) lch->parent=this->parent; lch=parent; parent=parent->parent; lch->parent=this; lch->update(); update(); } void rRotate() { if(parent->parent) { if(parent==parent->parent->lch) parent->parent->lch=this; else parent->parent->rch=this; } parent->passDown(); passDown(); parent->lch=this->rch; if(rch) rch->parent=this->parent; rch=parent; parent=parent->parent; rch->parent=this; rch->update(); update(); } Node* splay() { while(parent) { ; ; ; if(parent->parent) { ; ; } switch(status) { : rRotate(); break; : lRotate(); break; : parent->rRotate(); this->rRotate(); break; : lRotate(); rRotate(); break; : rRotate(); lRotate(); break; : parent->lRotate(); this->lRotate(); break; } } return this; } };
注意双旋的Zig-Zig(Zag-Zag)和Zig-Zag(Zag-Zig),后者可以分解成两次单旋,而前者不能。
借教室一题的85分代码(Vijos):
(Splay果然常数大……当然很可能是我写萎了……)
#include <algorithm> using std::max; using std::min; struct SplayNode { typedef SplayNode Node; Node* lch; Node* rch; Node* parent; int idx; int val; int minVal; int lazyTag; SplayNode() {} SplayNode(int _idx,int _val,Node* _parent): lch(),rch(),parent(_parent),idx(_idx),val(_val), minVal(_val),lazyTag() {} void assign(int _idx,int _val,int _minVal,Node* _rch,Node* _parent) { idx=_idx; val=_val; minVal=_minVal; lazyTag=; lch=; rch=_rch; parent=_parent; } int actual() { return minVal + lazyTag; } void passDown() { if(!lazyTag) return; if(lch) lch->lazyTag += this->lazyTag; if(rch) rch->lazyTag += this->lazyTag; val += lazyTag; minVal += lazyTag; lazyTag = ; } void update() { minVal = lch ? ( rch ? min(min(lch->actual(),rch->actual()),this->val) : min(lch->actual(),this->val) ) : ( rch ? min(rch->actual(),this->val) : this->val ); } void lRotate() { if(parent->parent) { if(parent==parent->parent->lch) parent->parent->lch=this; else parent->parent->rch=this; } parent->passDown(); passDown(); parent->rch=this->lch; if(lch) lch->parent=this->parent; lch=parent; parent=parent->parent; lch->parent=this; lch->update(); update(); } void rRotate() { if(parent->parent) { if(parent==parent->parent->lch) parent->parent->lch=this; else parent->parent->rch=this; } parent->passDown(); passDown(); parent->lch=this->rch; if(rch) rch->parent=this->parent; rch=parent; parent=parent->parent; rch->parent=this; rch->update(); update(); } Node* splay() { while(parent) { ; ; ; if(parent->parent) { ; ; } switch(status) { : rRotate(); break; : lRotate(); break; : parent->rRotate(); this->rRotate(); break; : lRotate(); rRotate(); break; : rRotate(); lRotate(); break; : parent->lRotate(); this->lRotate(); break; } } return this; } }; ; SplayNode node[maxN]; int n,m; int change(int d,int s,int t) { ; ) status |= ; ; switch(status) { : node[s-].splay(); node[s-].rch->parent=; node[t+].splay(); node[s-].rch=&node[t+]; node[t+].parent=&node[s-]; node[t+].lch->lazyTag -= d; node[t+].update(); node[s-].update(); ; : node[t+].splay(); node[t+].lch->lazyTag -= d; node[t+].update(); ; : node[s-].splay(); node[s-].rch->lazyTag -= d; node[s-].update(); ; : node[].splay(); node[].val -= d; node[].minVal -= d; ].rch) node[].rch->lazyTag -= d; ; } } #include <cstdarg> #include <cstdio> #include <cctype> void readInt(int argCnt,...) { va_list va; va_start(va,argCnt); while(argCnt--) { int* dest=va_arg(va,int*); ; char curDigit; do curDigit=getchar(); while(!isdigit(curDigit)); while(isdigit(curDigit)) { destVal = destVal * + curDigit - '; curDigit=getchar(); } *dest=destVal; } va_end(va); } int avai[maxN]; int main() { readInt(,&n,&m); ;i<=n;++i) readInt(,avai+i); for(int i=n;i;--i) { ,&node[i-]); ) node[i].assign(n,avai[i],min(avai[i],node[i+].minVal),&node[i+],); ].minVal),&node[i+],&node[i-]); } ;i<=m;i++) { int d,s,t; readInt(,&d,&s,&t); int rt=change(d,s,t); ) { printf("-1\n%d",i); ; } } printf("); ; }
修正了一点失误+改成了静态内存
(也许出题人没想到有人会用splay写这道题,所以之前的错误居然没被查出来……)
对于这道题,我们需要给每个Node额外设立3个域:idx(教室的标号,作为键值),minVal(子树中val的最小值),和lazyTag(修改的懒惰标记)
对区间[L,R]进行修改时,首先将L-1提到根,然后将R+1提到根的右孩子处,那么R+1的左孩子就是待修改的区间
当然要特判L==1和R==n(即左/右端为边界的情况)
注意旋转过程中要不断下传lazyTag并对节点的minVal值更新
(这个超级麻烦,一定要把每个细节都想全了,稍有一点疏忽就会出错,而且很不好查)
询问时直接询问根节点的minVal值即可(注意要让根节点的lazyTag传下去)