链接:
https://codeforces.com/contest/1228/problem/C
题意:
Let's introduce some definitions that will be needed later.
Let prime(x) be the set of prime divisors of x. For example, prime(140)={2,5,7}, prime(169)={13}.
Let g(x,p) be the maximum possible integer pk where k is an integer such that x is divisible by pk. For example:
g(45,3)=9 (45 is divisible by 32=9 but not divisible by 33=27),
g(63,7)=7 (63 is divisible by 71=7 but not divisible by 72=49).
Let f(x,y) be the product of g(y,p) for all p in prime(x). For example:
f(30,70)=g(70,2)⋅g(70,3)⋅g(70,5)=21⋅30⋅51=10,
f(525,63)=g(63,3)⋅g(63,5)⋅g(63,7)=32⋅50⋅71=63.
You have integers x and n. Calculate f(x,1)⋅f(x,2)⋅…⋅f(x,n)mod(109+7).
思路:
对于x的每个质约数, 计算其在n!内的乘积总和.
先得到x的质约数, 对于每个质数p, 其在n!内存在n/p^1, n/p^2....因为算的时候不断累加后面, 所有算一边即可.
快速幂优化.
代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MOD = 1e9+7;
vector<int> Pri;
void Init(LL val)
{
for (LL i = 2;i*i <= val;i++)
{
if (val%i == 0)
Pri.push_back(i);
while (val%i == 0)
val /= i;
}
if (val != 1)
Pri.push_back(val);
}
LL Cal(LL val, int p)
{
//素数p在val的阶乘下的次方贡献
LL cnt = 0;
while (val)
{
cnt += val/p;
val /= p;
}
return cnt;
}
LL QucikMi(LL a, LL b)
{
LL res = 1;
while (b)
{
if (b&1)
res = (res*a)%MOD;
a = (a*a)%MOD;
b >>= 1;
}
return res;
}
int main()
{
LL x, n;
cin >> x >> n;
Init(x);
LL res = 1;
for (int i = 0;i < Pri.size();i++)
{
LL cnt = Cal(n, Pri[i]);
res = (res*(QucikMi(Pri[i], cnt)))%MOD;
}
cout << res%MOD << endl;
return 0;
}